Geosyn	tec ^{>}
J	

consultants

COMPUTATION COVER SHEET

Client: <u>TVA</u> Project: <u>Dre</u>	dge Cells Rec	covery	Project/Proposal #:	GR4327 Task #: 105
TITLE OF COMPUTATIONS Se	epage and Sta	bility Study for	East Dike and Raised Di	ke
COMPUTATIONS BY:	Signature			30 June 2010
	Printed Name and Title	Justin Wang Project Engine	eer	DATE
ASSUMPTIONS AND PROCEDURE	ES			
CHECKED BY:	Signature			30 June 2010
(Peer Reviewer)	Printed Name and Title	Jill F. Simons Project Engine	eer	DATE
COMPUTATIONS CHECKED BY:	Signature			30 June 2010
	Printed Name and Title	Jill F. Simons Project Engine	eer	DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature			<u>30 June 2010</u> DATE
	Printed Name and Title	Justin Wang Project Engine	eer	
APPROVED BY:	Signature			30 June 2010
(PM or Designate)	Printed Name and Title	Robert C. Bac Principal	hus	DATE
APPROVAL NOTES:				
REVISIONS (Number and initial all re-	evisions)			
NO. SHEET DA		BY	CHECKED BY	APPROVAL

					Ge	-	sultar	
					Page	1	of	49
Written by: J. Wang	Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA P	roject: Dredg	e Cells Recove	ry	Project/ Proposal No.:	GR4327	Tasl	x No.:	105

Coogentoop

SEEPAGE AND STABILITY STUDY FOR EAST DIKE AND RAISED DIKE

PURPOSE

In March 2010, the Tennessee Valley Authority (TVA) requested that Geosyntec Consultants (Geosyntec) perform a seepage and stability study to evaluate the current stability of the East Dike that is located adjacent to the Intake Channel for the TVA Kingston Fossil Plant (KIF). As shown in Figure 1, the East Dike is located on a portion of reclaimed land that is adjacent to the existing Sluice Channel and the Ballfield Site (Site) at the KIF. In June 2010, TVA requested that Geosyntec also consider the effects of construction traffic that may traverse the Raised Dike haul road located between the Sluice Channel and the East Dike (see Figure 1) and potential improvements that may be needed at the toe of the East Dike adjacent to the Intake Channel. This calculation package was prepared to address these TVA requests.

The seepage and static stability analyses presented herein are used to evaluate potential shallow- and deep-seated failure modes along a typical cross section through the Sluice Channel, the Raised Dike, and the East Dike. In this calculation package, a conceptual rock blanket design is provided to address possible surface erosion and reduce the potential loss of fines along the downstream slope of the East Dike. Geosyntec understands that TVA requests that this conceptual design be provided to Stantec for preparation of detailed construction drawings that will be used for related ongoing dike stabilization activities adjacent to the Intake Channel.

BACKGROUND

The KIF is located on the Watts Bar Reservoir, at the confluence of the Emory River and Clinch River in Harriman, Tennessee approximately 35 miles southwest of Knoxville, Tennessee. The East Dike is on the far eastern edge of a portion of land bounded by the Sluice Channel and the Intake Channel as shown on the attached aerial plan included as Figure 1.

The top of the East Dike is a relatively narrow driveway used for inspection of the perimeter slopes of the KIF Site and is at approximate elevation 755 feet, which is approximately 18 feet above the winter pool elevation (i.e., 737 feet) of Watts Bar Lake. The Raised Dike is located approximately 120 feet west of the East Dike as shown in Figure 1. The top of the Raised Dike is used as a haul road and is at approximate elevation 767 feet. The outboard slope of the Raised Dike towards the east was originally constructed at a slope of approximately 3 horizontal to 1 vertical (3H:1V) and was covered with grass. In April 2010, a rock embankment was

consultants

						Page	2	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/2	10
Client: TVA	Project:	Dredge C	Cells Recover	ry	Project/ Proposal No.:	GR4327	Tasl	x No.:	105

constructed on the eastern side of the Raised Dike to widen the haul road at the crest of the Raised Dike. The slope of the new rock embankment is approximately 2H:1V. The outboard slope of the East Dike near the Intake Channel is approximately 6H:1V and is covered with grass and numerous small trees.

A drainage ditch is located along the northern edge of the East Dike driveway and below the toe of the referenced rock embankment on the eastern side of the Raised Dike. The ditch collects seepage water (referenced as the Red Water Seeps) from the slope of the Raised Dike and directs the water towards an area (referenced as the Passive Treatment Area) to the northeast that was created as a wetland by TVA to treat the Red Water Seeps. After passing through the Passive Treatment Area, water collects in a detention pond where the collected water is then pumped to the Ash Pond for discharge through the permitted outfall.

In addition to the Red Water Seeps, TVA has historically reported seepage locations along the slope of the East Dike, below the inspection driveway and above the Intake Channel. In March 2010, Jacobs Engineering (Jacobs) performed a survey of the seep locations along the East Dike. A total of 20 seep locations were identified as shown in Figure 2. At the request of TVA and Jacobs, Geosyntec performed a site reconnaissance in March 2010. A summary of the findings of the site reconnaissance was submitted to TVA as a memorandum dated 22 March 2010. In the memorandum, Geosyntec proposed a Seepage and Stability Study to evaluate the static stability of the East Dike in recognition of the observed seepage. After commencing this study, TVA and Jacobs requested that Geosyntec also assess stability of the Raised Dike, given that this area is being used to route construction traffic. This document provides the results of the analyses performed by Geosyntec in response to the TVA and Jacobs requests.

GEOTECHNICAL INVESTIGATION PROGRAM

As a part of the Seepage and Stability Study conducted in April 2010, Geosyntec requested that MACTEC advance six Standard Penetration Testing (SPT) borings along two cross section locations (i.e., A-A and B-B) selected by Geosyntec. The cross sections were selected at the locations where most active seeps along the outboard slope of the East Dike were observed. Continuous split-spoon samples were obtained during drilling. The borings were advanced to auger refusal depths to investigate the general engineering characteristics and the subsurface conditions. After the completion of the borings, TVA personnel surveyed the boring locations and the local ground surface elevations adjacent to the borings. The boring location plan is presented in Figure 3 along with cross section locations.

Geosyntec[▷] consultants

					Page	3	of	49
Written by: J. Wang		Date: <u>6/30/10</u>	Reviewed by:	J. Simons/R. Bachus]	Date:	6/30/1	10
Client: TVA	Project:	Dredge Cells Recovery	1	Project/ Proposal No.:	GR4327	Tasl	« No.:	105

are included in Attachment 1. A summary of the location and depth of the borings is presented in Table 1.

MACTEC also installed standpipe piezometers near each of the six borings to monitor the water levels in the Lower Dike Fill (five piezometers) and the Upper Dike Fill (one piezometer). Piezometer construction consisted of two-inch diameter, five-foot long, Schedule 40 PVC well screen at the bottom of the standpipes. A sand filter pack was used to backfill to some distance above the screened section followed by a minimum two-foot thick bentonite seal. Piezometer locations and tip elevations are summarized in Table 2. Water levels at these six locations were obtained on a daily basis during the first two weeks, and three times per week subsequently. A summary of the water level readings through 14 June 2010 is shown in Figure 4.

MACTEC performed laboratory testing on selected split-spoon samples and undisturbed (i.e., Shelby) tube samples. The results of these tests are included in Attachment 2. Table 3 summarizes the consolidated-undrained triaxial shear testing results. Table 4 summarizes the results of the permeability testing.

SUBSURFACE STRATIGRAPHY & MATERIAL PROPERTIES

Based on Geosyntec's review of the results of the geotechnical investigation program, the subsurface materials along cross section B-B generally exhibit slightly higher blow counts than the subsurface materials along cross section A-A. Therefore, Geosyntec identified cross section A-A as a more critical cross section and subsequently used the stratigraphy along this cross section in the seepage and static stability analyses. The location of the cross section A-A is shown in Figure 3. The ground surface geometry and the interpreted subsurface stratigraphy are presented in Figure 6. Previous geotechnical borings B-36, B-39, and B-47 performed by MACTEC in early 2009 were also included in the preparation of the stratigraphy of cross section A-A. The boring locations are shown in Figure 6. The boring logs for these three previous borings are also included in Attachment 1.

Geosyntec relied on information provided in previous documents related to the KIF [i.e., Geosyntec 2009a, 2009b, 2009c] as well as the new subsurface and laboratory information provided by MACTEC in Attachment 2 to select material properties for the seepage and stability analyses. The material properties used in the seepage analyses are summarized in Table 6, and the properties used in the stability analyses are summarized in Table 7.

Geosyntec consultants Page 4 of 49 Written by: J. Wang Date: 6/30/10 Reviewed by: J. Simons/R. Bachus Date: 6/30/10 Client: TVA Project: Dredge Cells Recovery Project/ Proposal No.: GR4327 Task No.: 105

SEEPAGE ANALYSES

Methodology

Based on the interpreted subsurface stratigraphy, a seepage model for the entire cross section A-A was developed based on the interpreted subsurface stratigraphy. Calculations related to seepage were conducted using the computer program SLIDE (version 5.044). SLIDE is distributed by Rocscience of Toronto, Ontario, Canada and includes the capability of performing steady-state, saturated and unsaturated groundwater analysis using the finite element method. The program calculates pore-pressures, piezometric head, and discharge quantities using the site-specific geometry considered for the slope stability analysis. Calculated pore pressures at discrete points are integrated into the slope stability analysis.

Steady state seepage was assumed for these analyses, using static water levels in the rim ditch, the sluice channel, and the intake channel as boundary conditions. The water level in the rim ditch and sluice channel was assumed to be at elevation 765 feet based on recent topographic plan provided by Jacobs. On the downstream side, the water level in the intake channel was assumed to be at elevation 737 feet, corresponding to a normal winter pool of the adjacent Watts Bar Lake.

Additional relevant boundary conditions for the SLIDE analysis are assumed as follows. Along the vertical upstream edge of the model, the hydraulic head at each node is constant with depth and equal to the rim ditch/sluice channel water level elevation. Along the vertical downstream edge of the model, the hydraulic head at each node is equal to the intake channel water level elevation at the location of the node. Other nodes along the ground surface are treated as potential seepage exit locations. The base of the model is assumed to be located on top of the shale bedrock and is modeled as a seepage barrier, where flow is not allowed to cross these boundary nodes.

Input Parameters

For the analyzed cross section A-A, the representative profile was compiled based on boring logs and available record drawings. The hydraulic conductivity for vertical seepage through saturated materials (k_v) was estimated using available laboratory data. Typical values for similar soils were obtained by Geosyntec using various public sources in cases when laboratory data were not available. The ratio of horizontal hydraulic conductivity (k_h) to vertical hydraulic conductivity (k_v) was estimated based on placement condition of the materials. Given the

consultants

						Page	5	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/2	10
Client: TVA	Project:	Dredge	e Cells Recove	ery	Project/ Proposal No.:	GR4327	Tasl	k No.:	105

hydraulic placement condition of the materials, a typical value of $k_h/k_v=10$ was assumed for the ash, the clay dike material, the clayey foundation materials, and the sandy foundation material.

Comparing Field Measurements and Piezometer Readings

The field measurements and the calculated water levels at the piezometer locations along the analyzed section A-A are graphically shown in Figure 4. The calculated phreatic surface is observed to intersect the ditch near the toe of the Raised Dike where the Red Water Seeps were observed. The phreatic surface is also observed to intersect the sloping ground surface above the Intake Channel elevation. The numerical model, did not, however, indicate conditions in which the phreatic surface was above the ground surface, a condition that was measured in the field in piezometer PZ-A3. To address this discrepancy, Geosyntec has studied the pressure head calculated by the seepage analysis. In Figure 5, Point A located at the center of the Upper East Dike Fill layer indicates that the calculated pressure head equals the hydrostatic pressure. This is explains why the calculated phreatic surface is at the ground surface. Point B located at the center screen location of piezometer PZ-A3 indicates that the calculated pressure head is approximately 0.25 feet higher than the hydrostatic pressure. This is consistent with the measured ground water level in piezometer PZ-A3 is higher than the ground surface, indicating that the Upper Dike Fill may be performing as a confining unit for the lower stratum. These site-specific water pressures in the two units were considered in the stability analyses.

In general, the calculated water levels at piezometers PZ-A1 and PZ-A2 and the calculated pore pressure at piezometer PZ-A3 correspond with the field measurements reasonably well, which indicates the assumed boundary conditions, hydraulic conductivities, and the hydraulic conductivity ratio used in the seepage analysis are reasonable. The calculated total head contours represent the results of seepage analysis and are presented in Figure 6. The phreatic surface will be used for the static stability analysis.

Critical Exit Gradient

A critical exit gradient is calculated as the gradient that causes seepage pressures in an upward direction to exceed the downward force of the soil. In this case, the calculated factor of safety (FS) with respect to the escape gradient (FS_G) can be defined as:

$$FS_{gradient} = i_c / i \tag{1}$$

						Page	6	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus	1	Date:	6/30/1	0
Client: TVA	Project:	Dredge	e Cells Recove	ry	Project/ Proposal No.:	GR4327	_ Tasl	k No.:	105

where *i* is the escape gradient in the soil at the exit point. SLIDE computes values of the escape gradient. The hydraulic gradient associated with escape gradient near an unrestrained soil surface is termed the critical gradient, i_c , which can be computed as:

 $i_{\rm c} = (\gamma - \gamma_{\rm w}) / \gamma_{\rm w} \tag{2}$

where γ is the total unit weight of the soil and γ_w is the unit weight of water. For the clayey dike material such as the Upper Dike Fill and Lower Dike Fill, γ is approximately 120 pounds per cubic feet (pcf) and the γ_w is 62.4 pcf. Therefore, the calculated i_c is ≈ 0.9 .

Investigators have recommended ranges for FS_G from 1.5 to 5 according to US Army Corps of Engineers (USACE) Engineering Manual 1110-2-1901 [USACE 1986]. In the absence of specific design guidance, Geosyntec assumed a value in the mid-range of these values and selected a target $FS_G = 3$ in this calculation package.

Contour plots of the vertical hydraulic gradient and the phreatic surface computed in SLIDE are shown in Figure 8. The negative value indicates the water flows downward and the positive value indicates the water flows upward. Due to the different hydraulic conductivities of different layers, the contour lines are discontinuous at the material boundaries. The results indicate that the calculated vertical hydraulic gradient, *i*, ranges from 0 to 0.06 along the outboard slope of Raised Dike and from 0 to 0.3 along the slope of the East Dike. The calculated maximum *i* is located at the toe of the East Dike. Using Equation (1), the minimum FS_G is calculated as 3. Therefore, the slope of the Raised Dike and the slope of the East Dike meet the design criteria for escape gradient at the seepage exits.

STABILITY ANALYSES

Methodology

Static stability analyses were performed using Spencer's method [Spencer 1973], as implemented in SLIDE, the same program used in the previously referenced seepage analysis. Two failure modes were considered in the analyses: (i) rotational failure modes (i.e., circular slip surfaces); and (ii) translational failure modes (i.e., block slip surfaces). The purpose of the stability analyses is to evaluate the calculated factor of safety for these two potential relatively deep-seated failure modes.

consultants

					Page	7	of	49
Written by: J. Wang		Date: <u>6/30/</u>	10 Reviewed by:	J. Simons/R. Bachus	I	Date:	6/30/2	10
Client: TVA	Project:	Dredge Cells	Recovery	Project/ Proposal No.:	GR4327	_ Tasl	x No.:	105

Spencer's method is chosen to analyze the rotational failure modes and the translational failure modes. Spencer's method, which satisfies both vertical and horizontal force equilibrium and moment equilibrium, is considered to be more rigorous than other methods, including the simplified Janbu method [Janbu, 1973] and the simplified Bishop method [Bishop, 1955].

Input Parameters

Information required for the static stability analyses includes slope geometry, subsurface ash/soil stratigraphy, phreatic surface computed from the seepage analysis, and material properties of the subsurface soils along the selected cross section.

Target Factors of Safety

Target factors of safety for these conditions are identified in Section 1.4.2 of TVA's 7 December 2009 report titled "*Facilities Design and Construction Requirements, Volume 2, Rev 1.0.*" In this document, the TVA requirement for post-closure slopes (i.e., long-term conditions) is 1.5. TVA allows a calculated factor of safety of 1.3 for "interim slopes." Geosyntec believes that the heavy construction traffic that is used intermittently at the Site should be considered an interim loading condition that is subject to appropriate operational controls (e.g., load and speed control of the vehicles, monitoring of slope performance, etc.). Following this logic, Geosyntec believes that under the construction vehicle loading, the target calculated FS should be greater than 1.30.

Truck Loading

TVA requested that Geosyntec consider the effects of construction traffic that may traverse the Raised Dike haul road will have on the stability of the Raised Dike. A typical truck (i.e., a Caterpillar 740 articulated truck) was considered for the slope stability analyses. The configuration of the truck load is presented in Figure 9. According to the specifications for the Caterpillar 740, the magnitude of the load on each row of tires is calculated as 2,800 psf for a loaded truck and 1,280 psf for an unloaded truck. TVA indicated that only unloaded trucks would be used. To provide a complete assessment, Geosyntec considered the case of both loaded and unloaded articulated trucks.

Results

The minimum FS for the East Dike at Cross Section A-A was calculated. The results are summarized in Table 7. As shown in this table, all calculation results are greater than the target values of 1.5 for long-term loading conditions. The calculated critical failure surface for each potential failure mode is shown graphically in Figures 10 (rotation) and 11 (translation).

consultants

						Page	8	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	10
Client: TVA	Project:	Dredg	e Cells Recove	ery	Project/ Proposal No.:	GR432	7 Tasl	k No.:	105

With regards to the Raised Dike, analyses were performed to evaluate the slope stability with and without the consideration of construction traffic. The stability analysis used the calculated water levels from the seepage analysis. When considering construction traffic, an offset distance of 5 ft from the crest of the Raised Dike to the edge of the truck tire was imposed to recognize recommended and safe construction practices in proximity to sideslopes in the absence of physical barriers (i.e., Jersey barriers). The analyses were performed for the short-term, undrained loading condition assuming the excess pore water pressure generated due to the truck load had not dissipated. The undrained shear strength properties presented in Table 6 were applied to the soft pond ash, dense bottom ash, and clayey foundation soil.

The results for the analyses with and without construction loading are summarized in Table 8. The calculated critical failure surfaces for each potential failure mode are shown graphically in Figures 12 to 17. The calculated factors of safety for the Raised Dike without construction traffic are greater than 1.5 and are believed to be appropriate for long-term conditions at the site. The calculated factors of safety for the Raised Dike under construction traffic are greater than 1.3 and are believed to be appropriate for short-term conditions at the site.

In recognition of conditions in which the pore pressures of the Lower Dike Fill layer of the East Dike increase, Geosyntec performed a limited series of stability analyses considering the long-term loading conditions. In the stability analysis, Geosyntec applied a separate piezometric line for the Lower Dike Fill layer. Results are shown in Figure 18 through 21 and summarized in Table 9. The calculated minimum FS decreases from 1.53 to 1.20 when the pore pressure of the Lower Dike Fill layer increases from 0.5 feet to 2 feet above the existing ground surface. From the record of the piezometers PZ-A3 and PZ-B3, the measured water levels range from 0.25 to 1.5 feet above the existing ground surface due to the confining effect of the Upper Fill Layer. To improve the local stability in the event of elevated water pressures, control surface erosion, and reduce the potential loss of fines from the East Dike foundation, Geosyntec recommends a rock blanket is shown in Figure 22. The results of the stability analysis including the addition of this conceptual rock blanket indicate that the minimum FS is increased with the installation of the rock blanket. The results are graphically shown in Figures 23 through 26. The calculated minimum FS are greater than the target values of 1.5 for long-term loading conditions.

CONCLUSIONS

The results from the seepage analyses indicated a shallow phreatic surface within the Raised Dike and the East Dike. These elevated water levels are confirmed by the observation of

consultants

						Page	9	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus	1	Date:	6/30/2	10
Client: TVA	Project:	Dredge	e Cells Recove	ery	Project/ Proposal No.:	GR4327	_ Tasl	x No.:	105

seepage location along the slope above the East Dike as shown in Figure 2. The minimum factor of safety of escape gradient is calculated as 3 for the slopes of the Raised Dike and East Dike. The result from the seepage model indicate that the slopes of the Raised Dike and East Dike meets the current criteria for escape gradient.

The stability analysis performed by Geosyntec indicates that the East Dike has adequate calculated factors of safety against a deep-seated failure mechanism in long term conditions. These results indicate that the East Dike is stable with respect to the potential formation of relatively deep-seated failures that would compromise the retention of the Raised Dike. Geosyntec also considered the potential adverse impacts of elevated pore pressures in the Lower Dike Fill layer of the East Dike. Results indicate that stability is increased by including a stabilizing rock blanket drain along the face of the East Dike.

Additionally, Geosyntec considered the potential for both circular rotation and block sliding failure modes and calculated factor of safety values under static loading conditions for the Raised Dike haul road embankment. Table 8 summarizes the calculation results for the various referenced long-term and short-term loading conditions, as well as the target values of FS for these conditions. As noted in the table, the analyses explicitly consider the condition that the trucks will travel no closer than 5 ft from the edge of the Raised Dike haul road embankment. For each analysis, the calculated FS values exceed the target values. Therefore, the Raised Dike haul road achieves the target stability requirements of TVA for both short-term loading conditions with traffic and long-term loading conditions without traffic.

RECOMMENDATIONS

In recognition of conditions in which the water pressures of the Lower Dike Fill layer of the East Dike increase, Geosyntec performed a limited series of stability analyses considering the long-term loading conditions. As demonstrated, the calculated minimum FS decreases from 1.53 to 1.20 if the elevated water pressure of the Lower Dike Fill layer increases from 0.5 feet to 2 feet above the existing ground surface. To improve the local stability in the event of elevated water pressures, control surface erosion, and reduce the potential loss of fines from the East Dike foundation, Geosyntec recommends a minimum 2-ft thick rock blanket be placed along the downstream slope of the East Dike. The calculated minimum FS after installation of the rock blanket is greater than the target values of 1.5 for long-term loading conditions. Geosyntec understands that this report will be provided to Stantec and that the detailed design and construction drawings of the rock blanket will be provided by Stantec to be consistent with other rehabilitation measures along the Intake Channel sideslopes.

Geosyntec >

consultants

				Page <u>10</u> of <u>49</u>
Written by: J. Wang		Date: <u>6/30/10</u> Reviewed by:	J. Simons/R. Bachus	Date: <u>6/30/10</u>
Client: TVA	Project:	Dredge Cells Recovery	_ Project/ Proposal No.:	GR4327 Task No.: 105

In addition, to address potential safety issues and prevent local instability adjacent the sideslope in the absence of physical barriers, Geosyntec recommends that a minimum offset distance of 5 feet be maintained from the crest of the Raised Dike to the edge of truck tires and appropriate controls (e.g., loading and control of the vehicles, monitoring of slope performances, etc.) be implemented when heavy construction traffic is used at the Site.

						Page	11	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	e Cells Recover	ry	Project/ Proposal No.:	GR432	7 Task	x No.:	105

REFERENCES

- Bishop, A. (1955), *The Use of the Slip Circle in the Stability Analysis of Slopes*, Geotechnique, Volume 5, No. 1, Jan 1955, pp. 7-17.
- Geosyntec Consultants (2009a), Technical Summary Proposed Modification Regarding Spacing/Depth of Prefabricated Vertical Drains at Ball Field Temporary Ash Disposal Site, March 17, 2009.
- Geosyntec Consultants (2009b), Slope Stability Analyses for Dike 2, July 31, 2009.
- Geosyntec Consultants (2009c), Rapid Dewatering System and Filter Press System Foundation Assessment, December 16, 2009.
- Hammer, D.P., and Blackburn, E.D. (1977), Design and Construction of Retaining Dikes for Containment of Dredged Material, Technical Report D-77-9, U.S. Army Engineer Water Experiment Station, Vicksburg, Mississippi, August 1977, pp. 93.
- Janbu, N. (1973), *Slope Stability Computations*, Casagrande Memorial Volume, R. C. Hirschfield and S. J. Poulos, Eds., John Wiley, New York, 1973, pp. 47-86.
- Spencer, E. (1973), *The Thrust Line Criterion in Embankment Stability Analysis*, Géotechnique, Vol. 23, No. 1, pp. 85-100, March 1973.
- U.S. Army Corps of Engineers (USACE) (1986), Engineering and Design Seepage Analysis and Control for Dams, Engineering Manual EM 1110-2-1901, September 30 1986, pp. 4-24.

						Page	12	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	Cells Recover	У	Project/ Proposal No.:	GR432	7 Tasl	x No.:	105

Tables

Geosyntec[▷] consultants

							Page	13	of	49
Written l	by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client:	TVA	Project:	Dredge	Cells Recover	ry	Project/ Proposal No.:	GR432	7 Tasl	x No.:	105

Table 1. Summary of Borings

Boring No.	Northing	Easting	Ground Elevation (ft)	Boring Termination Depth (ft)	Boring Termination Elevation (ft)
A-1	553306.68	2439676.67	757.01	54.1	702.9
A-2	553255.32	2439700.02	754.51	50.2	704.3
A-3	553231.32	2439727.62	747.09	44.4	702.7
B-1	553531.64	2439911.34	759.29	47.1	712.2
B-2	553469.68	2439946.54	753.17	48.0	705.2
B-3	553416.90	2439942.30	748.49	40.3	708.2

Note:

- The northing, easting, and ground elevation at each boring location was provided by Jacobs on 22 April 1. 2010.
- 2. The piezometers were screen at the bottom of the well. The screen length was 5 feet.

Geosyntec[▷] consultants

						Page	14	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	Cells Recover	ry	Project/ Proposal No.:	GR432	7 Tasl	x No.:	105

Piezometer No.	Piezometer Depths (ft)	Ground Elevation ^[1] (ft)	Screen Depth (ft)	Layer Screened In
PZ-A1	24.77	757.02	22.77-24.77	Lower Dike Fill
PZ-A2	14.02	754.82	9.02-14.02	Upper Dike Fill
PZ-A3 ^[2]	25.86	747.09	20.86-25.86	Lower Dike Fill
PZ-B1	25.37	759.45	20.37-25.37	Lower Dike Fill
PZ-B2	20.02	753.17	15.02-20.02	Lower Dike Fill
PZ-B3 ^[2]	25.87	748.49	10.87-15.87	Lower Dike Fill

Table 2. Summary of Piezometers

Note:

- 1. The piezometer ground surface elevation at each piezometer location was provided by Jacobs on 22 April 2010.
- 2. The Lower Dike Fill layer is potentially a confined/pressurized layer.

consultants

						Page	15	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	Cells Recover	ry	Project/ Proposal No.:	GR432	7 Task	x No.:	105

Table 3. Summary of Consolidated – Undrained Triaxial Shear Testing

Boring	Sample	USCS	Material	Average Total	CU Triaxia	l Strength
No.	Interval (ft)	Classification	Zone	Unit Weight (pcf)	c' (psf)	φ' (⁰)
A-2	7-9	CL	Upper Dike Fill	131	210	30.3
A-2	23-25, 25- 27, 27-29	CL	Lower Dike Fill	129	0	33.4
A-2	35-37	CL	Clayey Foundation Soil	127	95	30.0
B-1	18-20	ML	Pond Ash	99	490	32.6

Note:

1. Laboratory testing results provided by MACTEC in April 2010 (see Attachment 2).

Geosyntec[▷] consultants

						Page	16	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	.0
Client: TVA	Project:	Dredge	e Cells Recove	ry	Project/ Proposal No.:	GR432	7 Tas	k No.:	105

Table 4. Summary of Permeability Testing

Boring	Sample	USCS	Total Unit	Permeability
No.	Interval (ft)	Classification	Weight (pcf)	(cm/s)
A-1	33-35	CL	131	5.3 x 10-8
A-2	9-11	CL	137	5.9 x 10-6
A-2	25-27	CL	120	1.7 x 10-7
A-2	33-35	CL	127	4.4 x 10-8
A-3	10.5-12.5	CL	124	8.4 x 10-8

Note:

1. Laboratory testing results provided by MACTEC in April 2010 (see Attachment 2).

Geosyntec consultants

						Page	17	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	e Cells Recove	ry	Project/ Proposal No.:	GR432	7 Tasl	k No.:	105

	Permea	bility	Source
Material Layers	Vertical k _v (cm/s)	k _h /k _v	
Crust Layer	3×10^{-5}	10	Note 1
Upper Dike Fill	$1.7 imes 10^{-7}$	10	Note 2
Lower Dike Fill	1.7×10^{-7}	10	Note 2
Soft Pond Ash	3×10^{-5}	10	Note 1
Dense Bottom Ash	3×10^{-5}	10	Note 1
Haul Road Rock Embankment	1×10^{-3}	1	Note 3
Clayey Foundation Soil	$4.4 imes 10^{-8}$	10	Note 2
Sandy Foundation Soil	1×10^{-5}	10	Note 3

Table 5. Material Properties for Seepage Analysis

Notes:

- 1. Based on *Fly Ash, Bottom Ash and Scrubber Gypsum Study* performed by Law Engineering at KIF site in 1995.
- 2. Based on laboratory testing results provided by MACTEC during this study (see Attachment 2).
- 3. Typical values for gravel and sands.

Geosyntec consultants

							Page	18	of	49
Written l	oy: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client:	TVA	Project:	Dredge	e Cells Recover	-y	Project/ Proposal No.:	GR432	7 Tasl	x No.:	105

Material	Total Unit Weight	Drained Shear Strength		Undrained Shear Strength
Layers	(pcf)	c' (psf)	φ' (°)	
Crust Layer	120	500	10	N/A
Upper East Dike Fill	125	200	30	N/A
Lower East Dike Fill	120	0	30	N/A
Soft Pond Ash	75	0	25 ^[1]	$Su/\sigma_v = 0.8^{[2]}$
Dense Bottom Ash	100	0	30	$Su/\sigma_v' = 0.8^{[2]}$
Haul Road Rock Embankment	135	0	35	N/A
Clayey Foundation Soil	125	0	30	$Su/\sigma_v = 0.25^{[3]}$
Sandy Foundation Soil	125	0	30	N/A

Table 6. Material Properties for Stability Analysis

Note:

- 1. The strength values recommended for the soft pond ash materials are based on previous [Geosyntec 2009a, 2009b, 2009c] documents. The values are conservative in comparison to the laboratory testing results provided by MACTEC during this study (see Attachment 2).
- 2. The undrained shear strength ratio for the soft pond ash and the dense bottom ash was considered to be 0.8 based on the CU test on the fly ash sample.
- 3. A typical value of 0.25 was considered for the undrained shear strength ratio for the clayey foundation soil.

consultants

							Page	19	of	49
Written l	by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client:	TVA	Project:	Dredge	Cells Recover	ry	Project/ Proposal No.:	GR432	7 Tasl	s No.:	105

Table 7. Results of Slope Stability Analysis for East Dike and Raised Dike (Long Term Condition)

Failure Mode	Analyzed Condition	Calculated FS	Target FS	Is FS OK?	Results Shown in Figure
Circular Slip	Long Term	1.62	1.5	Yes	10
Block Slip	Long Term	1.57	1.5	Yes	11

Notes:

1. Factors of safety presented in this table were calculated using Spencer's method for both the circular slip mode and the block slip mode.

consultants

						Page	20	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	e Cells Recover	ry	Project/ Proposal No.:	GR432	7 Tasl	x No.:	105

Table 8. Results of Slope Stability Analysis with Traffic Load for Raised Dike Haul Road (Short Term Condition)

Traffic load	Failure Mode	Analyzed Condition	Calculated FS	Target FS	Is FS OK?	Results Shown in Figure
	Circular Slip		1.64	1.5	Yes	12
No Traffic	Block Slip (Raised Dike Area)	Long Term	1.78	1.5	Yes	13
	Circular Slip		1.32	1.3	Yes	14
Loaded Truck	Block Slip (Raised Dike Area)	Short Term	1.61	1.3	Yes	15
	Circular Slip		1.34	1.3	Yes	16
Unloaded Truck	Block Slip (Raised Dike Area)	Short Term	1.99	1.3	Yes	17

Notes:

- 1. Stability analysis used calculated water levels and pore pressures from the seepage analysis.
- 2. Factors of safety presented in this table were calculated using Spencer's method for both the circular slip mode and the block slip mode.
- 3. An offset distance of 5 ft from the crest of the Raised Dike haul road to the edge of the truck tire was considered in the slope stability analyses.

consultants

							Page	21	of	49
Written	by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client:	TVA	Project:	Dredge	e Cells Recover	ry	Project/ Proposal No.:	GR432	7 Task	No.:	105

Table 9. Results of Slope Stability Analysis for Water Pressure Increases at East Dike with and without Rock Blanket (Long Term Condition)

Water Pressure Above Ground Surface (ft)	Calculated FS	Results Shown in Figure	Calculated FS After Installation of Rock Blanket	Results Shown in Figure
0.5	1.53	18	2.09	23
1.0	1.45	19	2.03	24
1.5	1.38	20	1.97	25
2.0	1.20	21	1.85	26

						Page	22	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	0
Client: TVA	Project:	Dredge	e Cells Recover	ry	Project/ Proposal No.:	GR432	7 Task	x No.:	105

Figures

Written by:	J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus
Client:	TVA	Project:	Dredge Cells R	lecovery		Project/ Proposal No.:
			Ash T Store	emporary age Area	Rim Ditch Sluice Raised East D Intake Channe	ike

Figure 1. Site Location

Geosyntec consultants

Page	23		of	49
	Date:		6/30/10	
GR4327		Task No.:		105

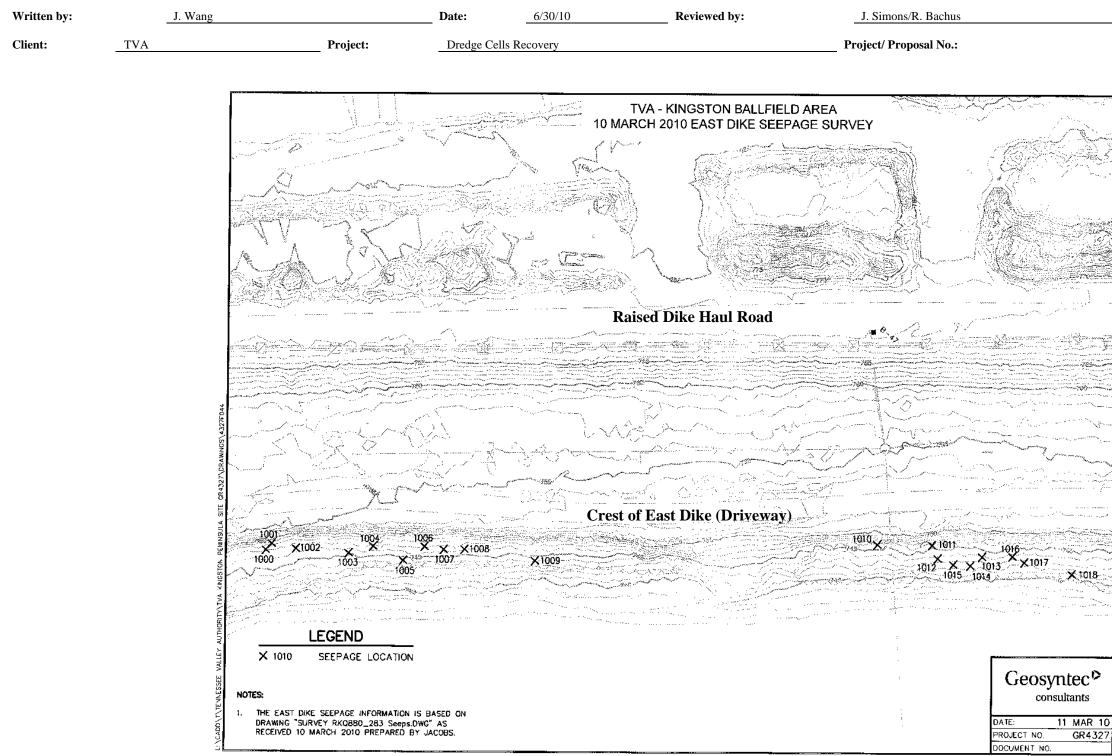


Figure 2. Seep Locations (Topographic Plan provided by Jacobs on 10 March 2010)

Geosyntec^D consultants

Page	_24		of	49
	Date:		6/30/10	
GR4327		Task No.:		105
· · · · · · · · ·	<u> </u>	1		
	D			
	50'			
···· ⁵ 34990				
	میں رہے۔ 			
	میں میں میں اور			
× 1019				
KENNE	SAW, GA			
	= 50' 7F044 9			

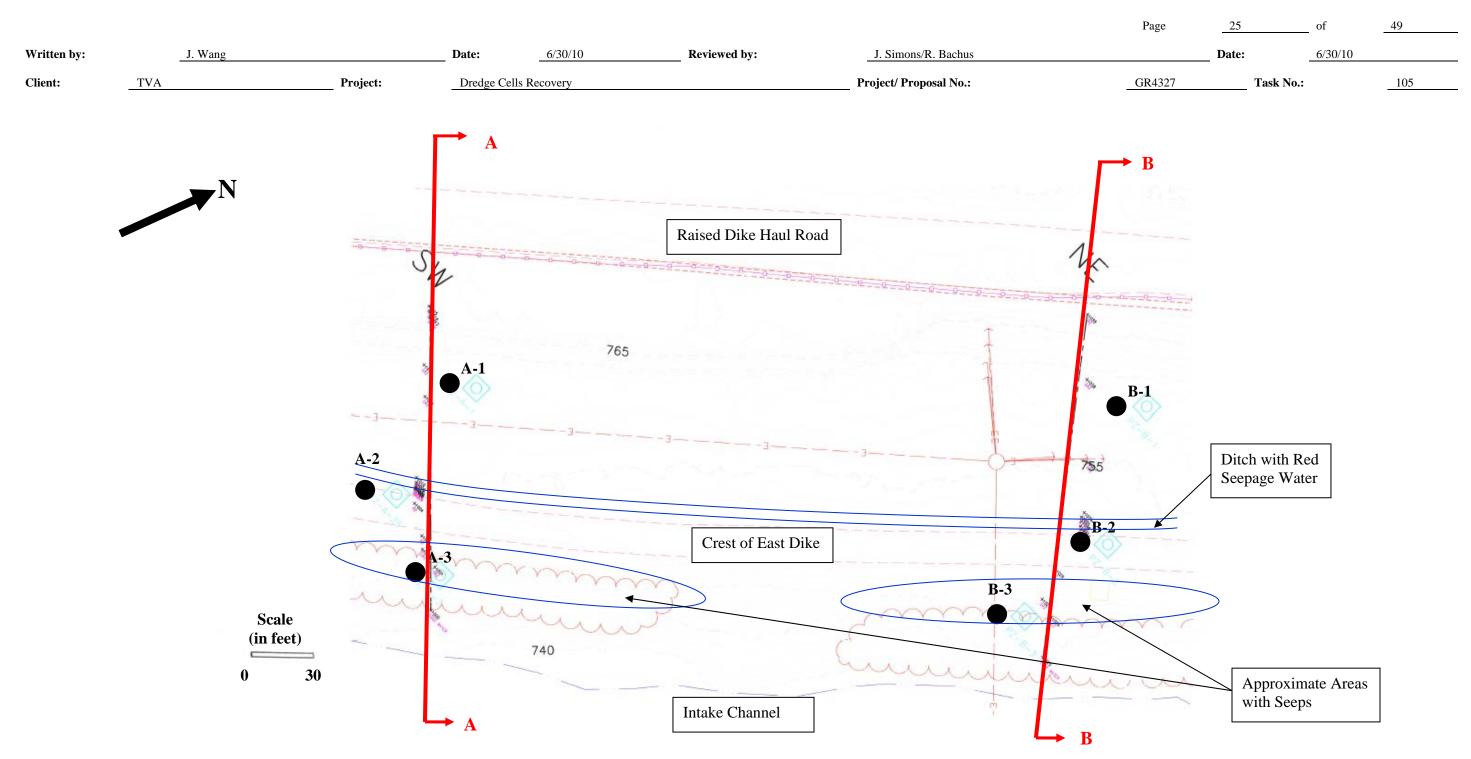


Figure 3. Boring and Cross Section Location Plan (Plan provided by Jacobs on 12 May 2010)

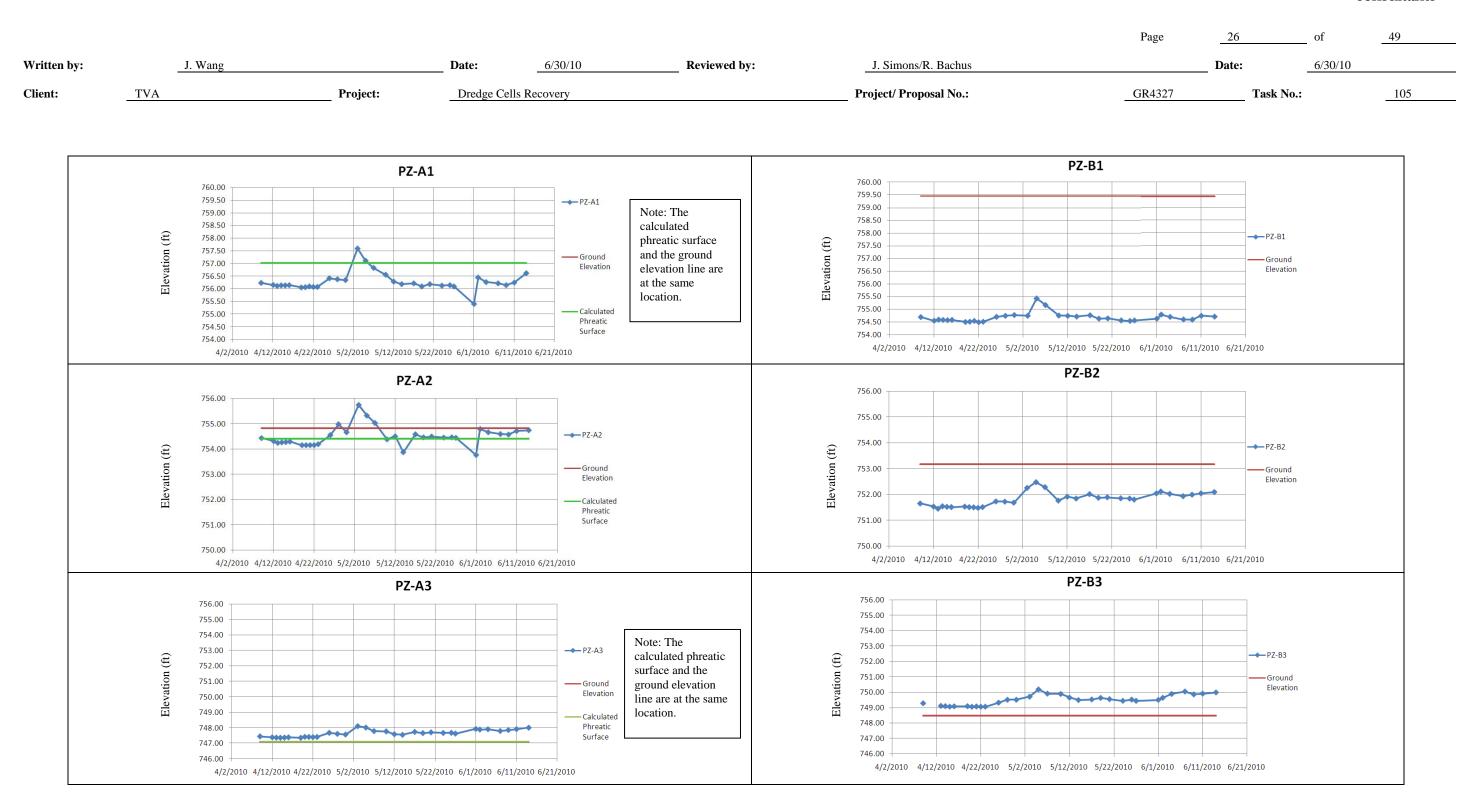


Figure 4. Summary of Piezometer Readings (to Date 14 June 2010)

Geosyntec consultants

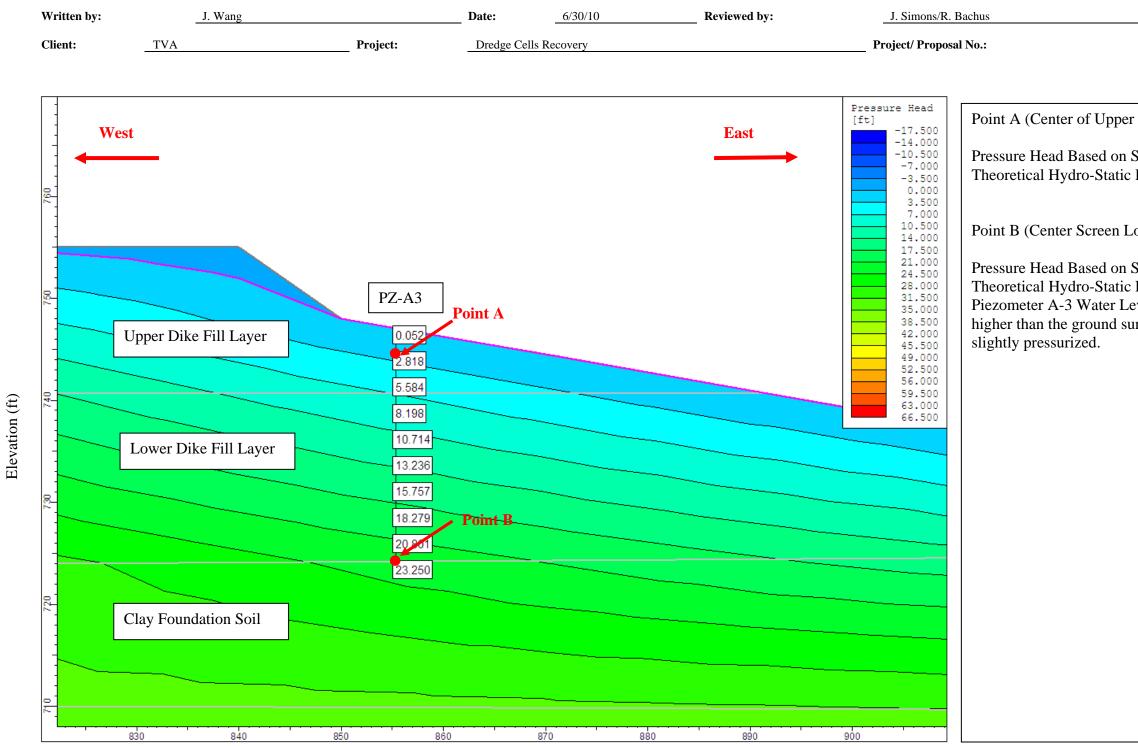


Figure 5. Pressure Head Contour Lines (Cross Section A-A)

Geosyntec[▷]

Page	27	of	49
	Date:	6/30/10	
GR4327	Task I	No.:	_105
			-
Dike Fill La	iyer):		
Seepage Ana			
Pressure He	ad: 747-735.2	2=2.8 ft	
ocation of Pi	iezometer PZ-	A3):	
	lysis: 23.25 ft		
	ad: 747-724= be 23.25-23=0		
rface. This i	indicates that	Point B is	

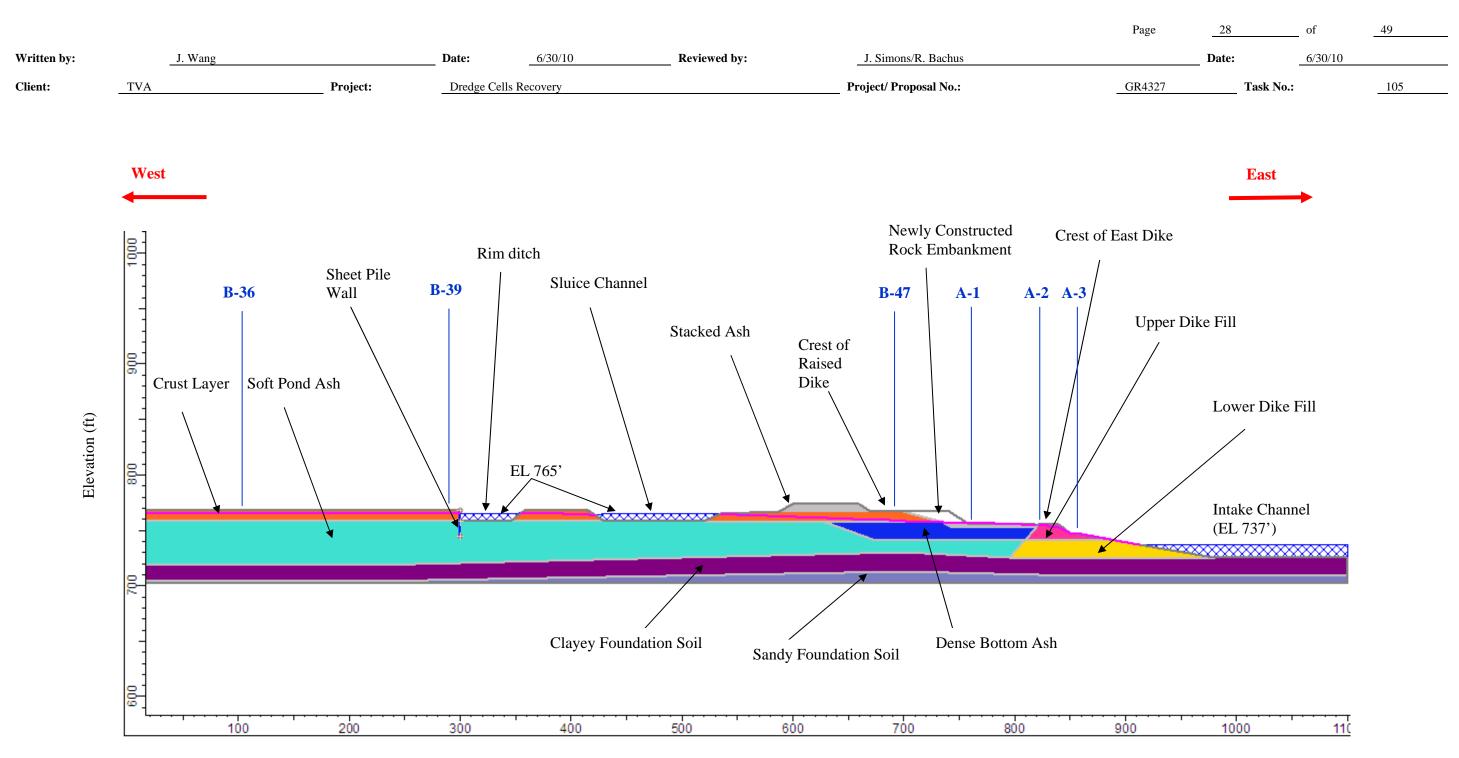


Figure 6. Surface Geometry and Subsurface Stratigraphy (Cross Section A-A)

Geosyntec Consultants

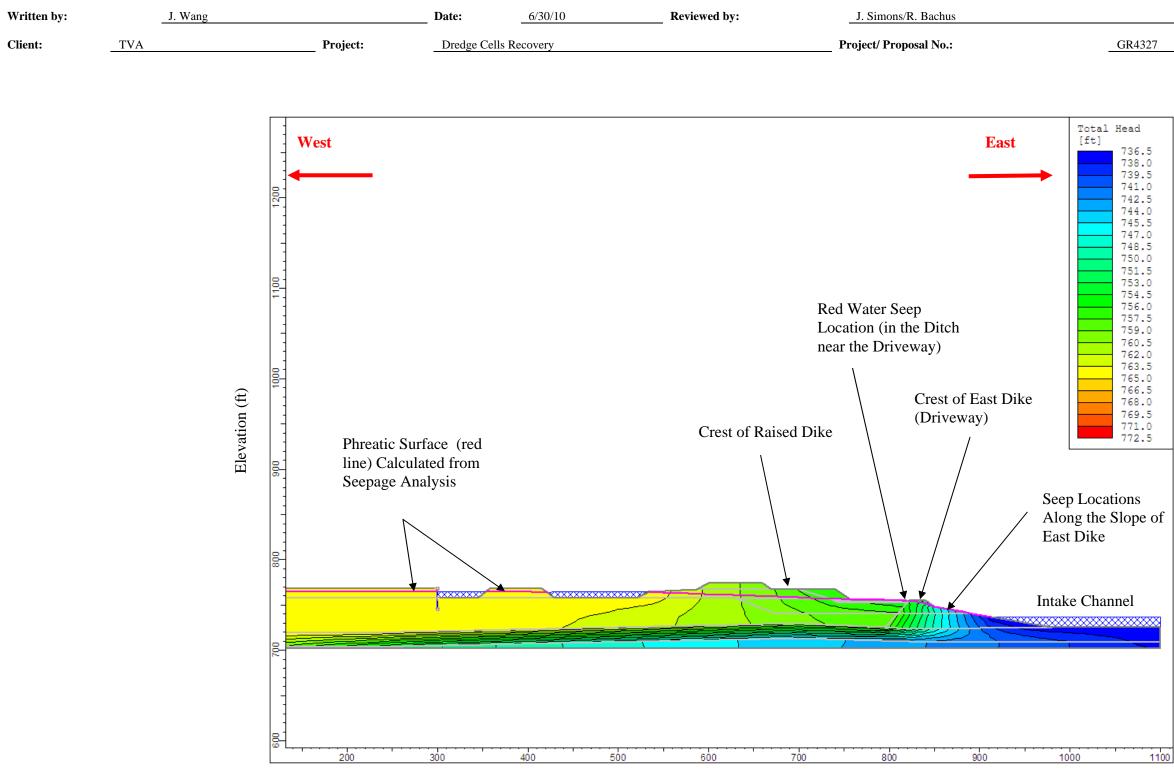
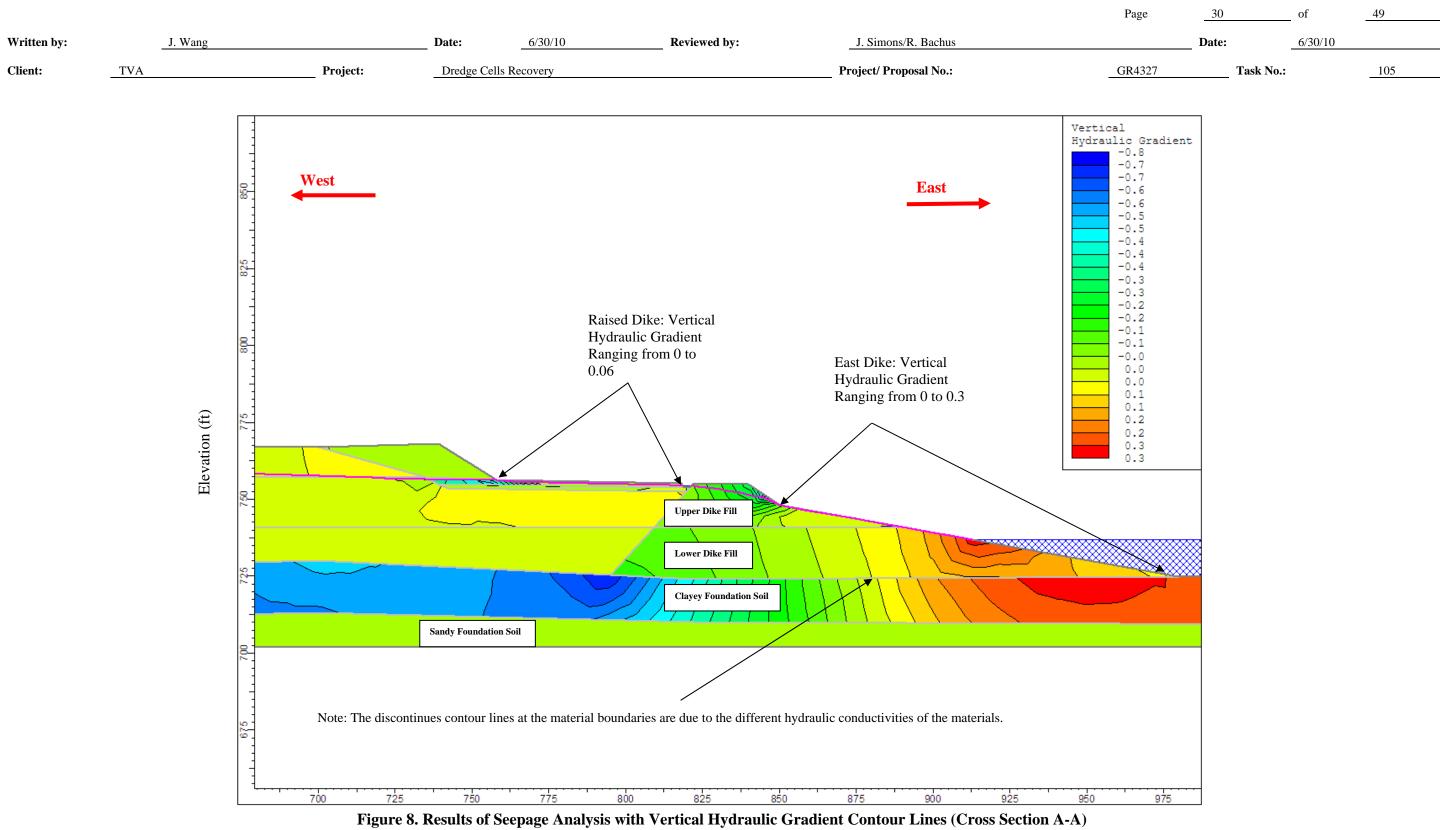
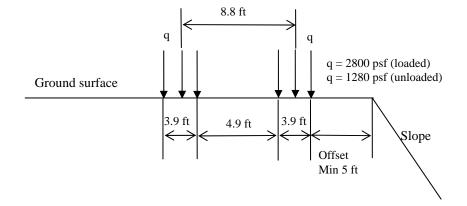



Figure 7. Results of Seepage Analysis with Total Head Contour Lines

Page	29	of	49
	Date:	6/30/10	
GR4327	Task I	No.:	105



Geosyntec[▷] consultants

Geosyntec <a>>

consultants

						Page	31	of	49
Written by: J. Wang		Date:	6/30/10	Reviewed by:	J. Simons/R. Bachus		Date:	6/30/1	10
Client: TVA	Project:	Dredge	e Cells Recove	ery	Project/ Proposal No.:	GR432	7 Tasl	k No.:	105

Figure 9. Truck Load Configuration

Notes:

1. Truck loading is calculated based on Caterpillar 740 truck.

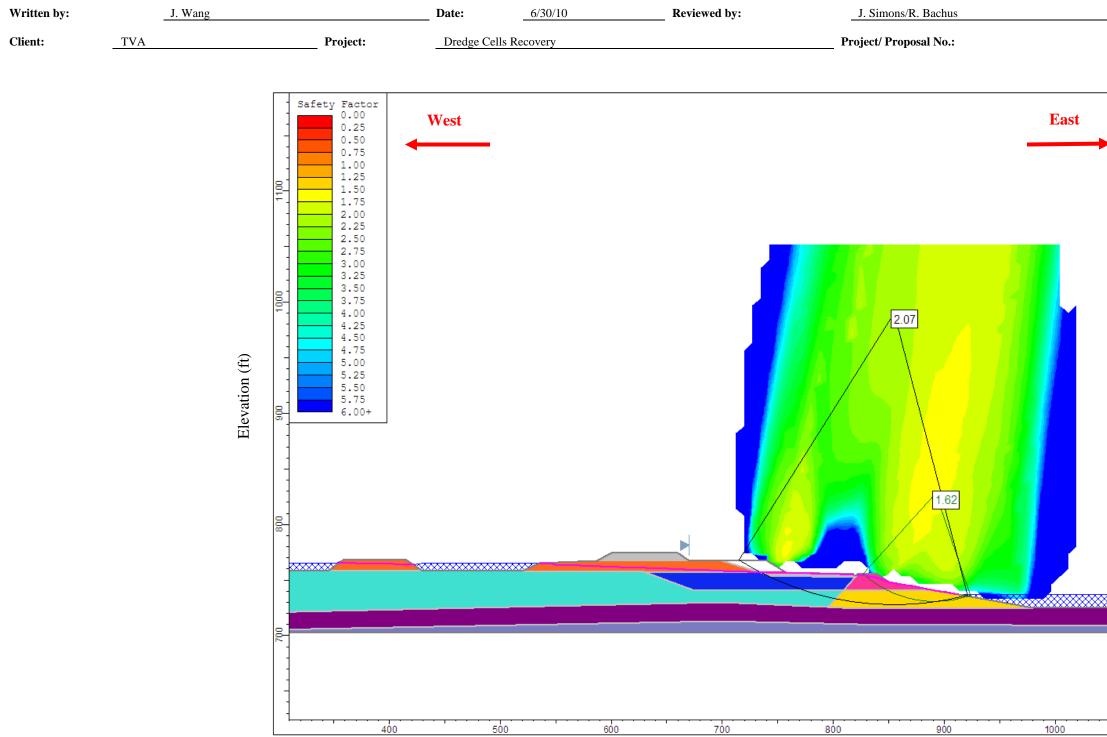


Figure 10. Results of Stability Analysis (Circular-Type Critical Surface, Cross Section A-A)

Geosyntec^D consultants

	Page	32		of	49	_
		Date:		6/30/10		
	GR4327		Task No.:		105	
]					
X						
	110					

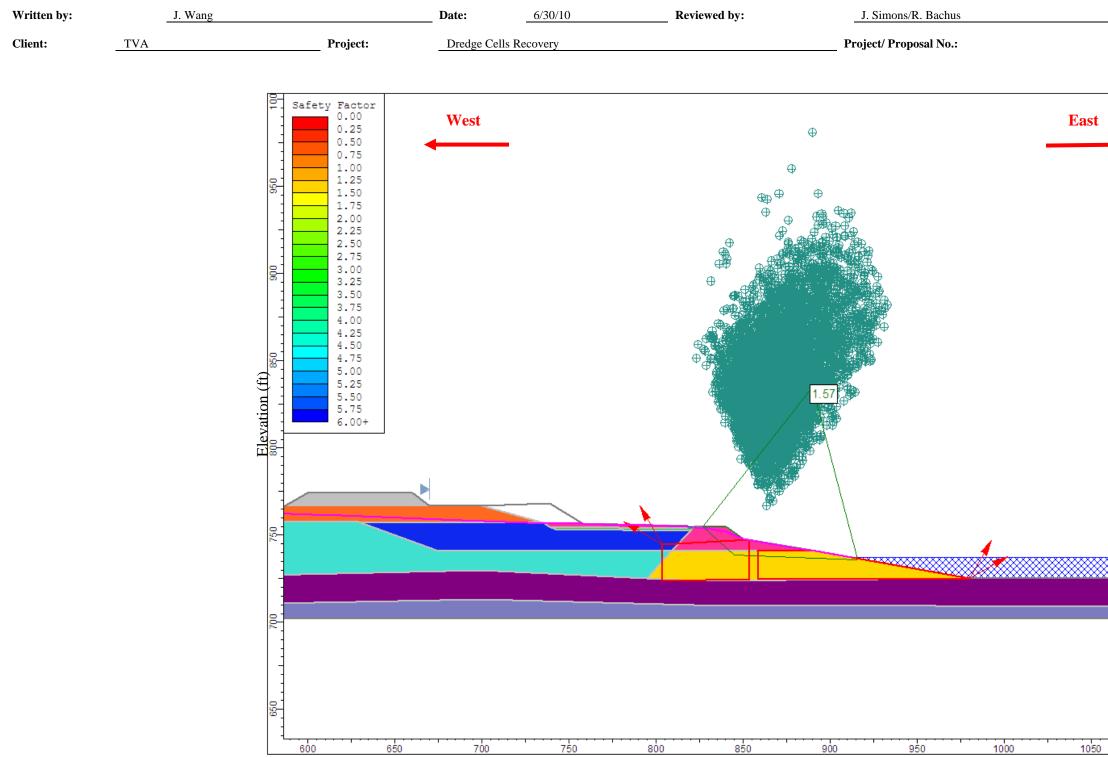
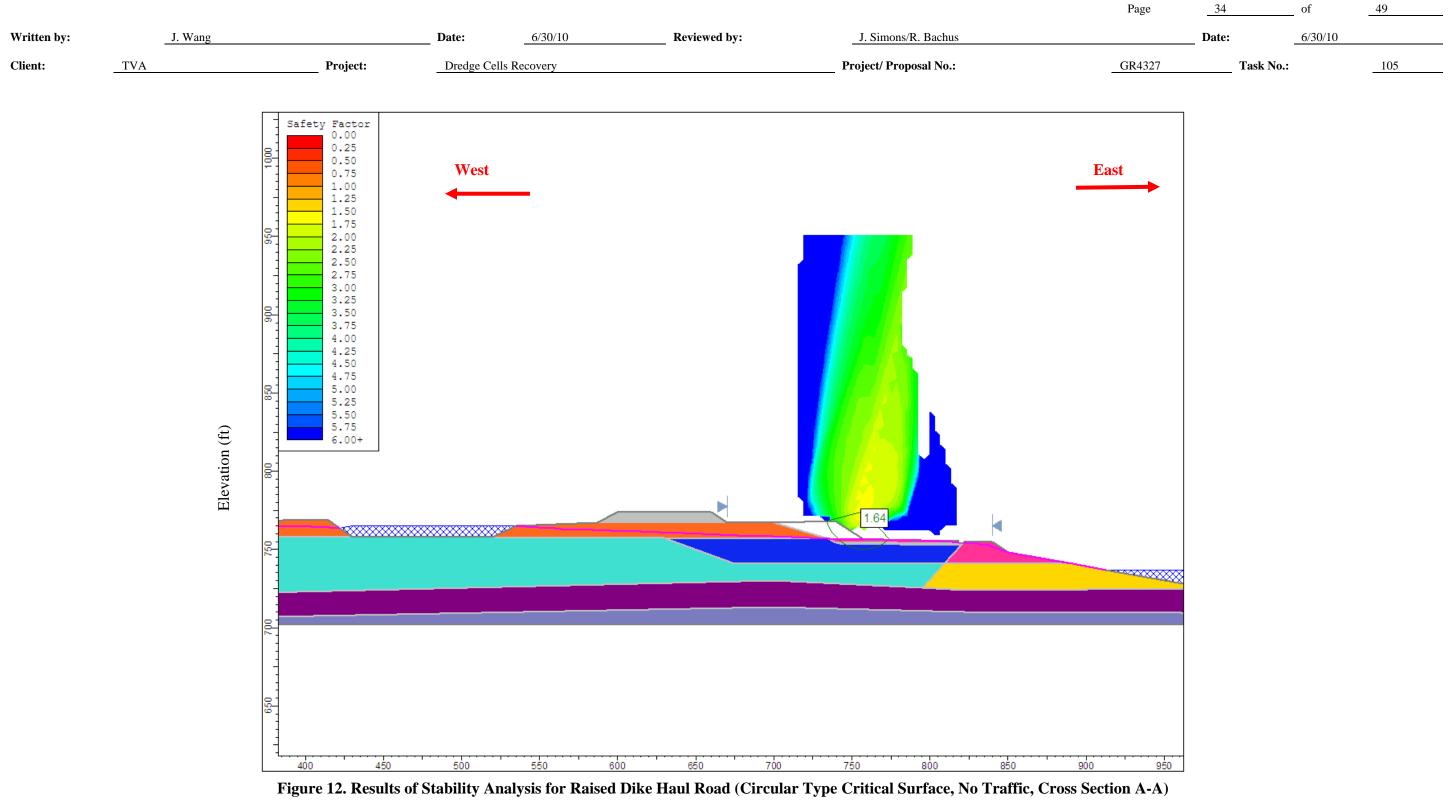
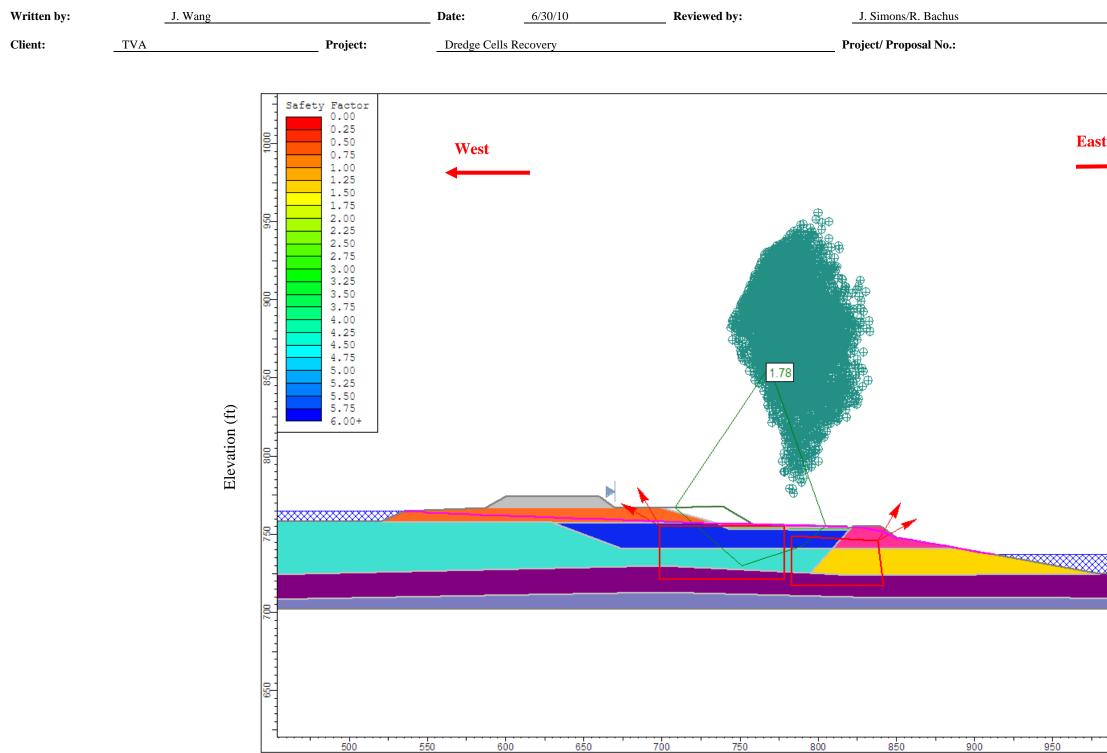
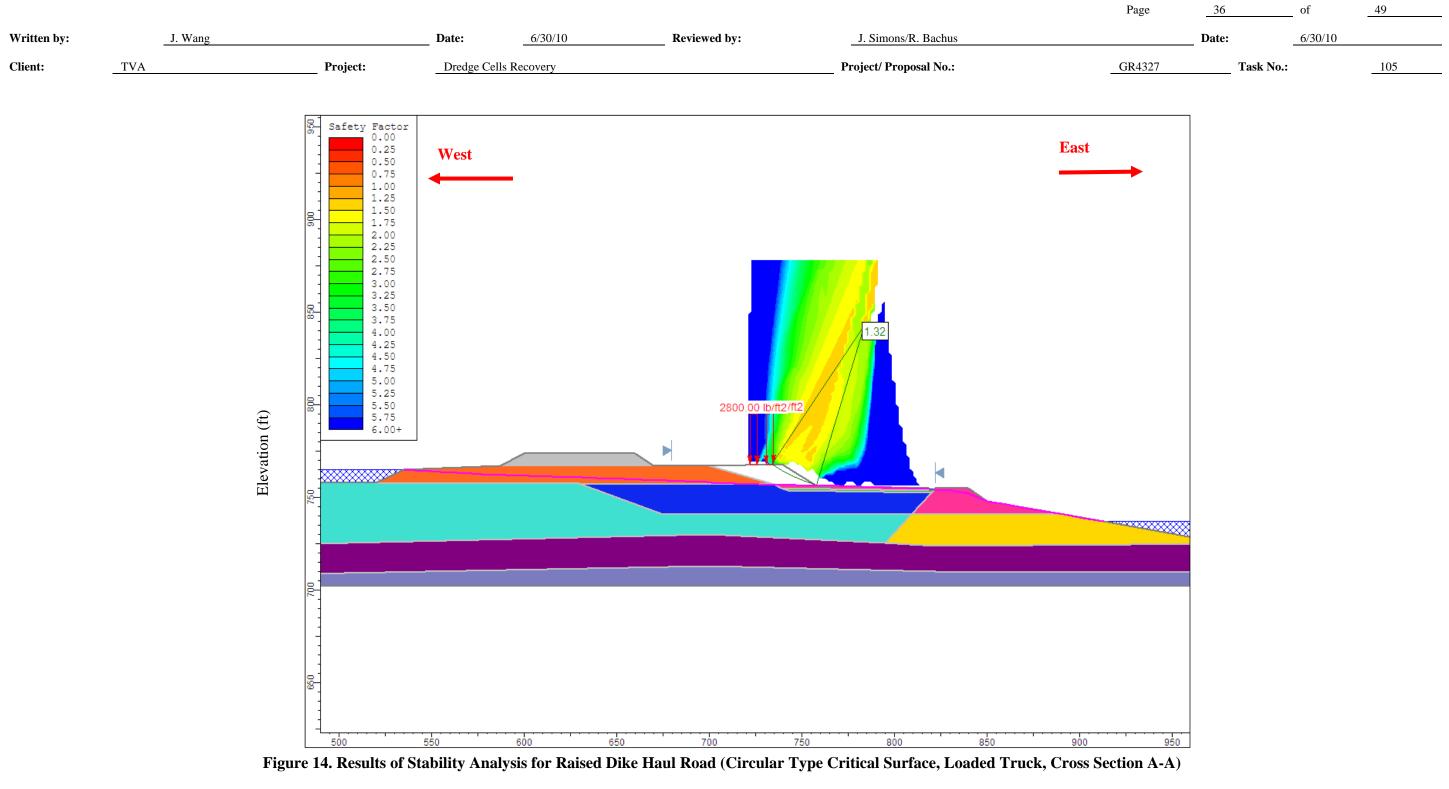
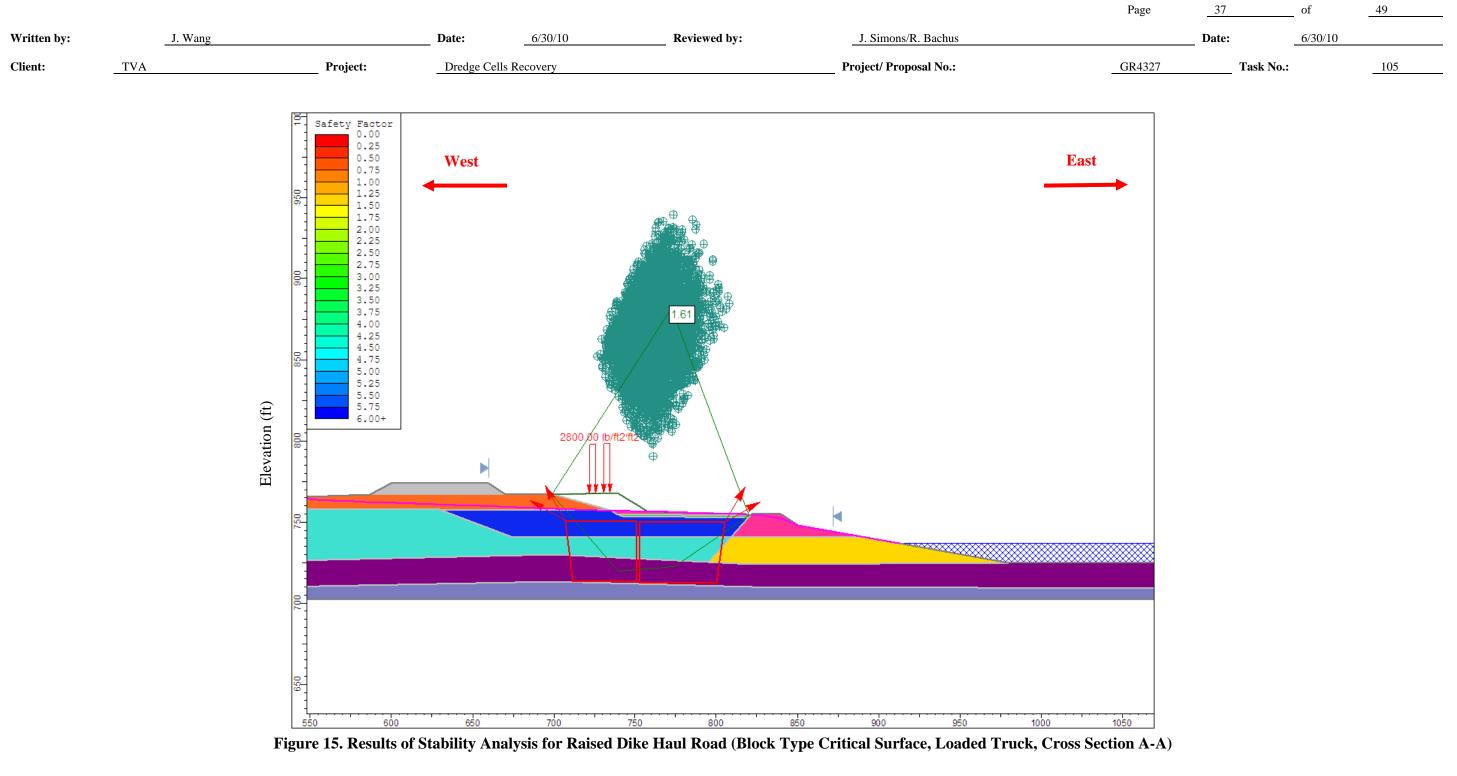



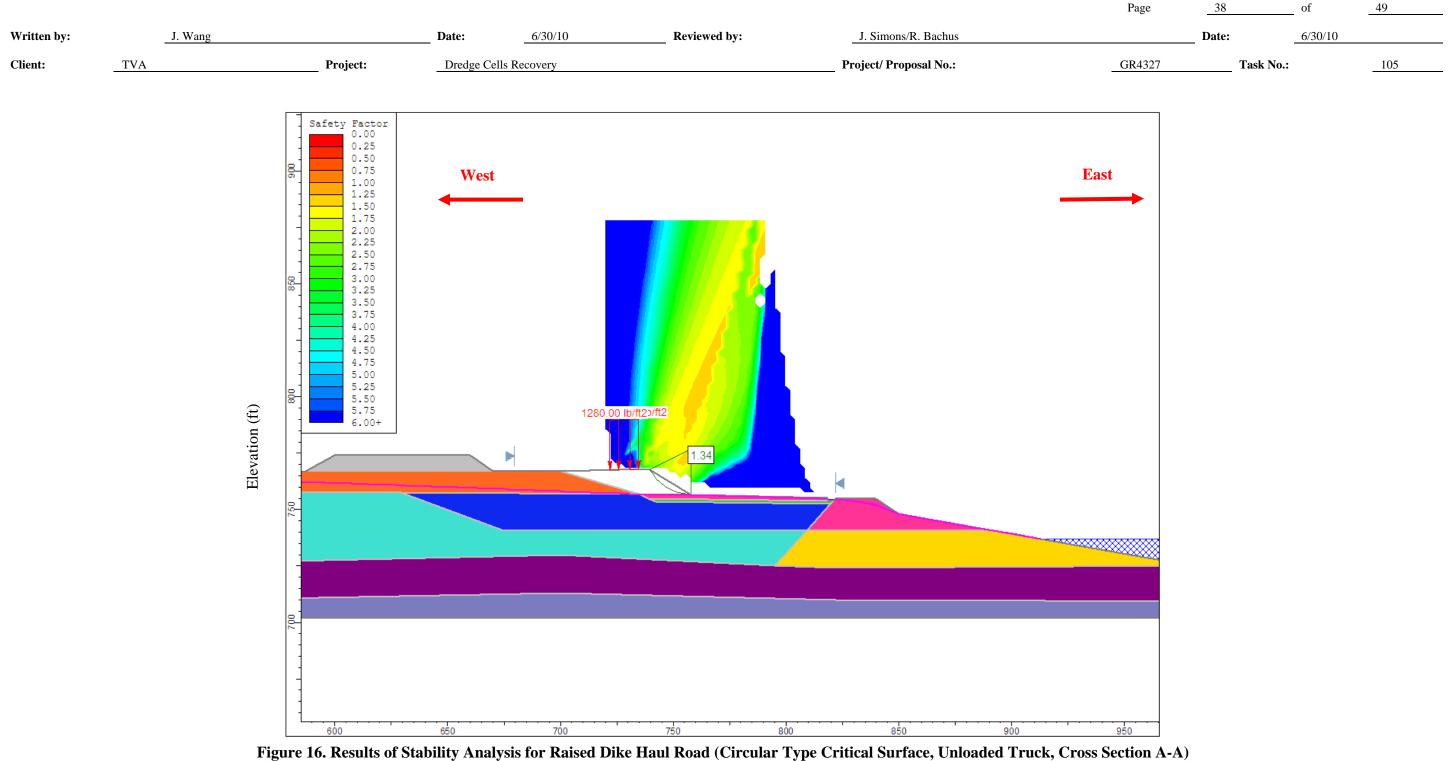
Figure11. Results of Stability Analysis (Block-Type Critical Surface, Near East Dike, Cross Section A-A)

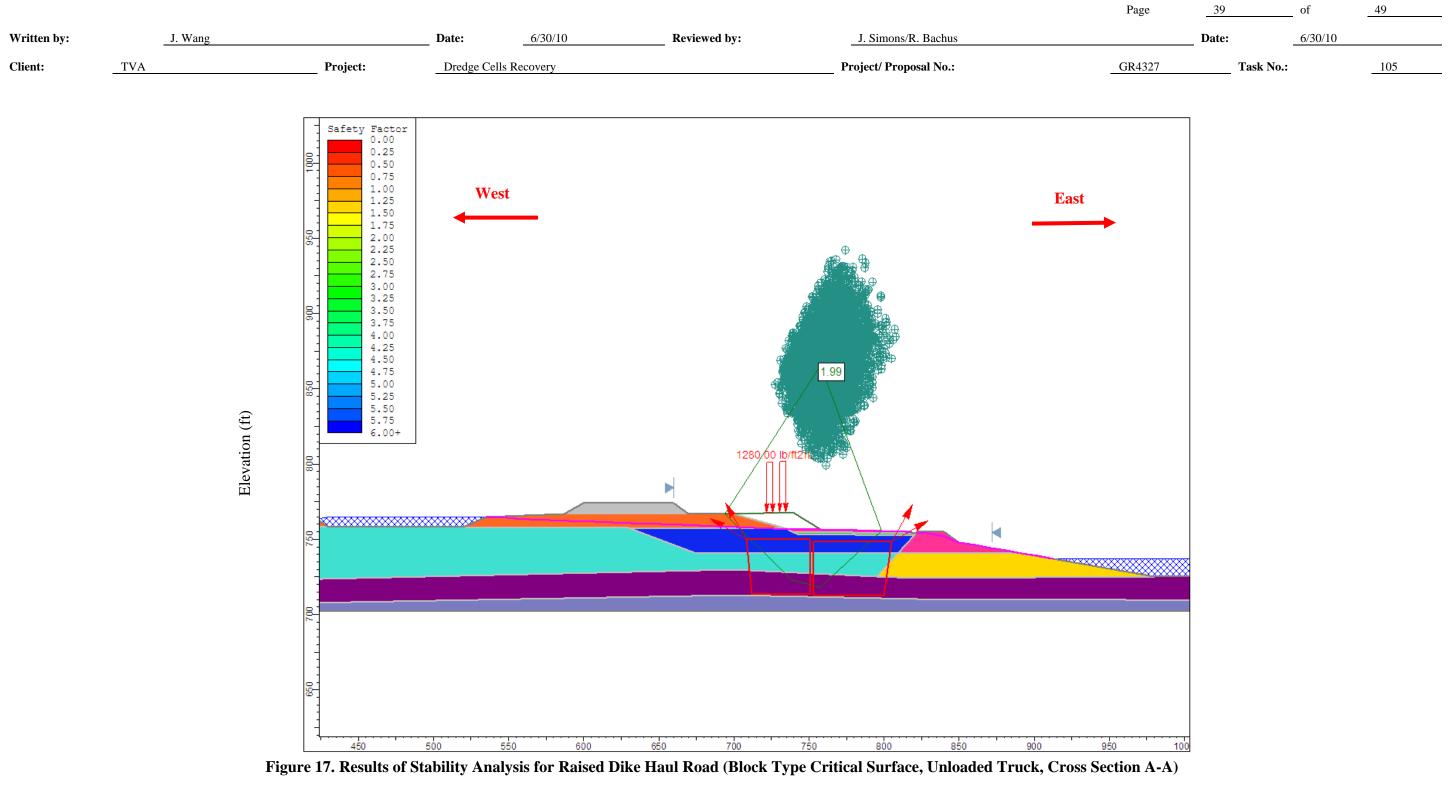
Geosyntec^D consultants

Page	33		of	49
	Date:		6/30/10	
GR4327		Task No.:		105
→				
<pre></pre>				

Geosyntec[▷] consultants


Figure 13. Results of Stability Analysis for Raised Dike Haul Road (Block Type Critical Surface, No Traffic, Cross Section


Geosyntec^D consultants

Page	35		of	49
	Date:		6/30/10	
GR4327		Task No.:		105
1000				
1000				

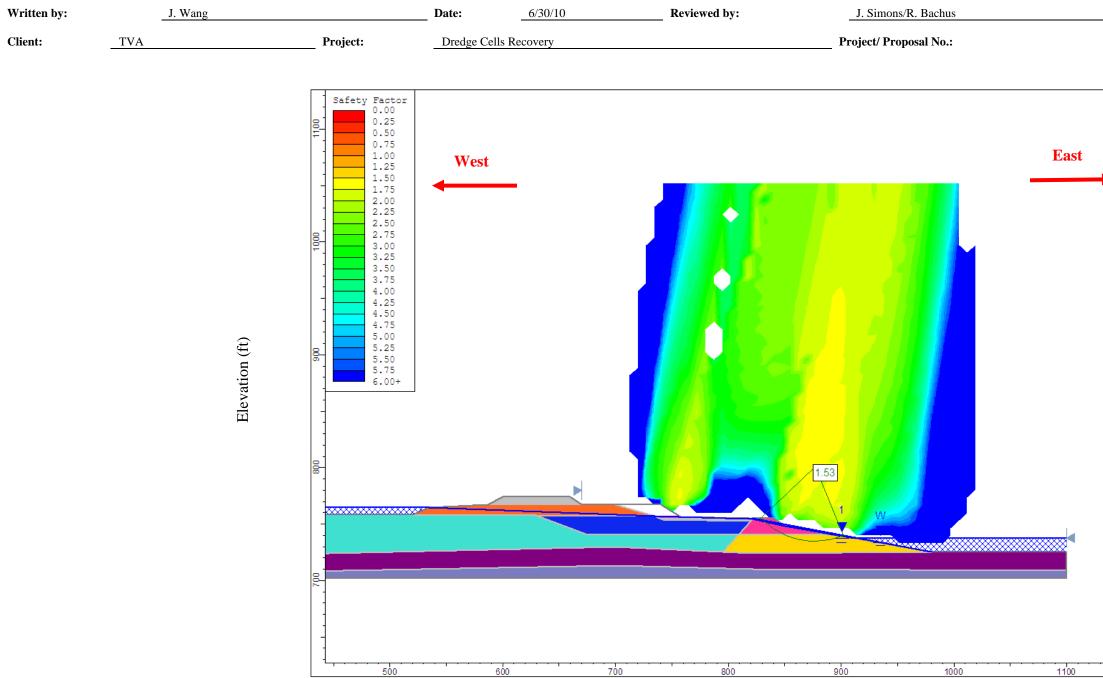
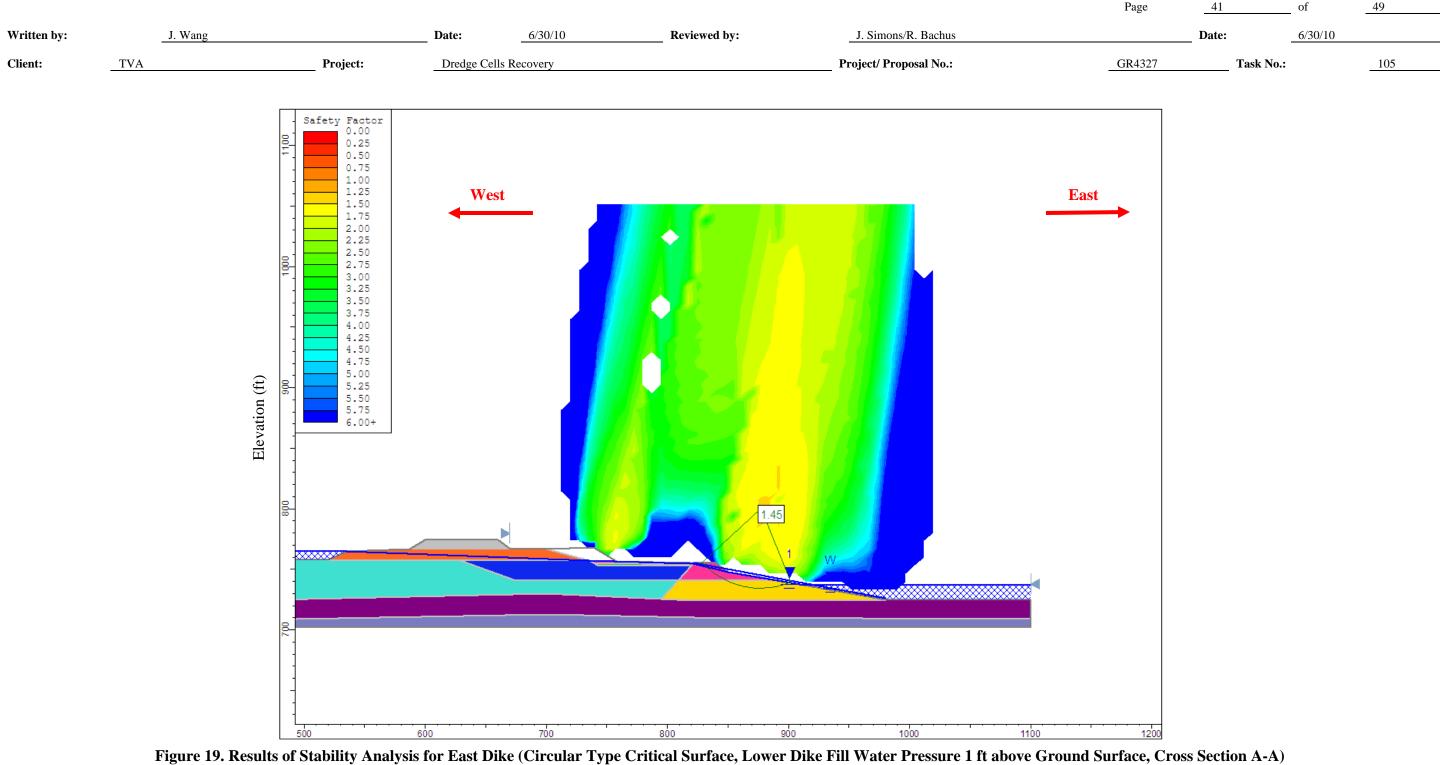



Figure 18. Results of Stability Analysis for East Dike (Circular Type Critical Surface, Lower Dike Fill Water Pressure 0.5 ft above Ground

Page	40		of	49	
	Date:		6/30/10		
GR4327		Task No.:		105	
▶					
Surface, C	ross Sect	ion A-A)			

Geosyntec ^{>}
consultants

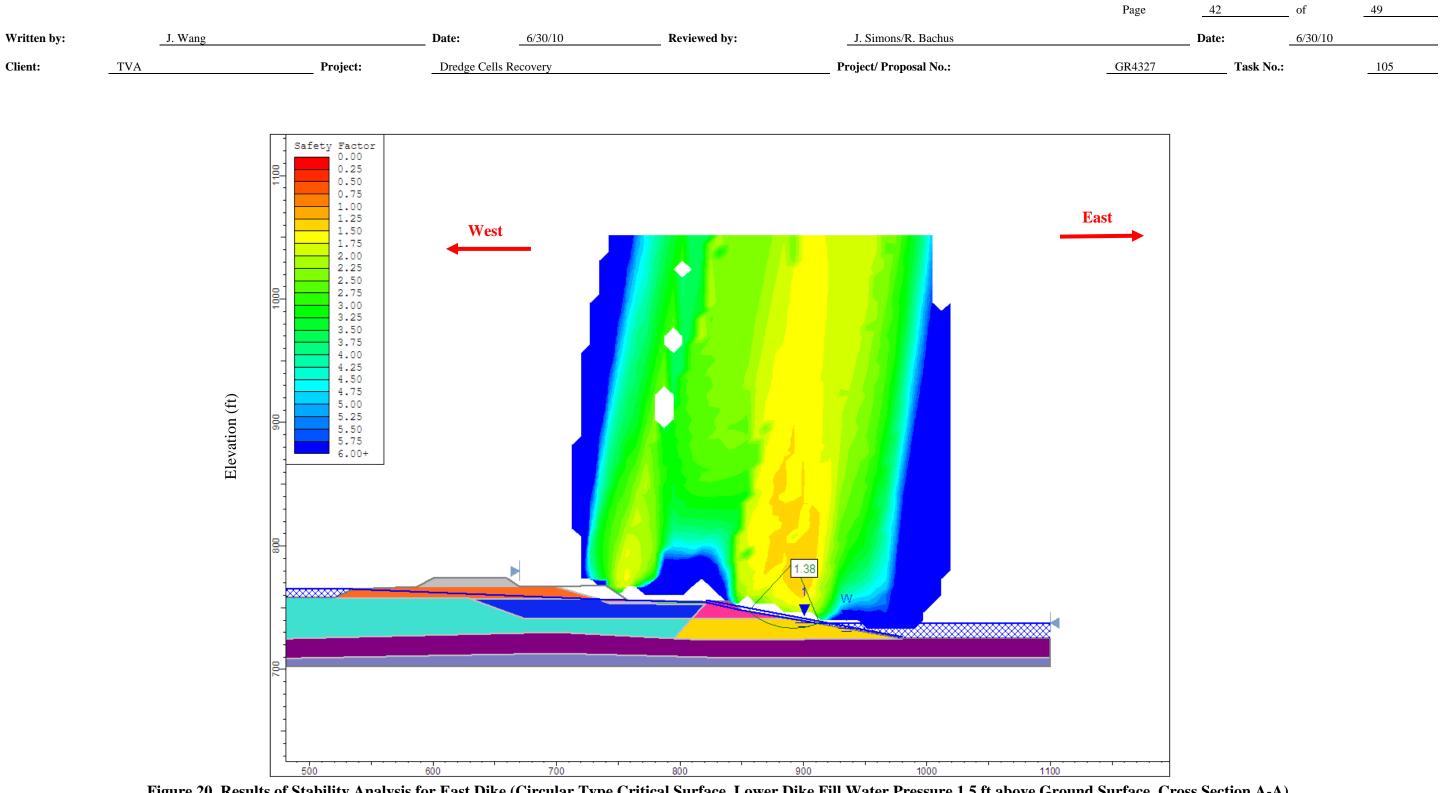


Figure 20. Results of Stability Analysis for East Dike (Circular Type Critical Surface, Lower Dike Fill Water Pressure 1.5 ft above Ground Surface, Cross Section A-A)

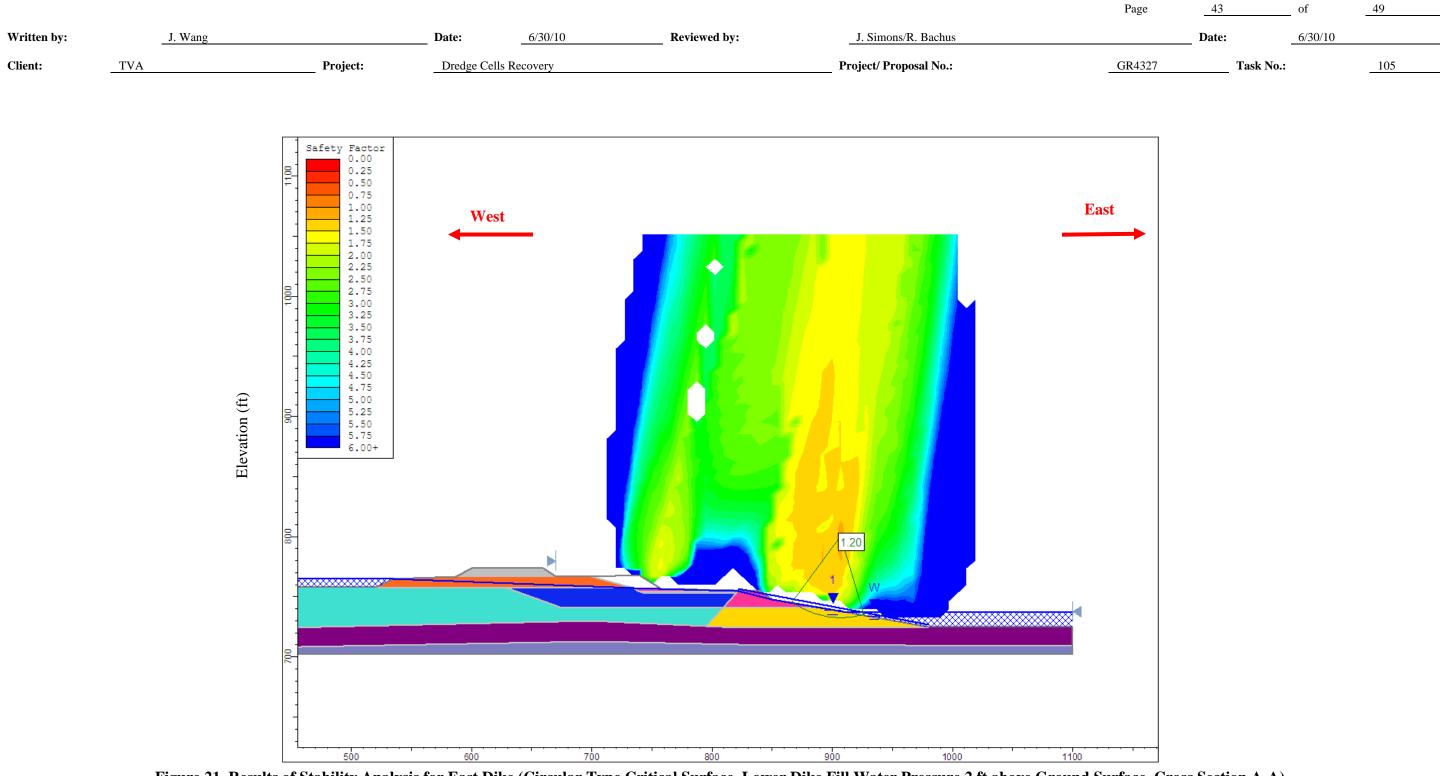


Figure 21. Results of Stability Analysis for East Dike (Circular Type Critical Surface, Lower Dike Fill Water Pressure 2 ft above Ground Surface, Cross Section A-A)

Geosyntec[>]

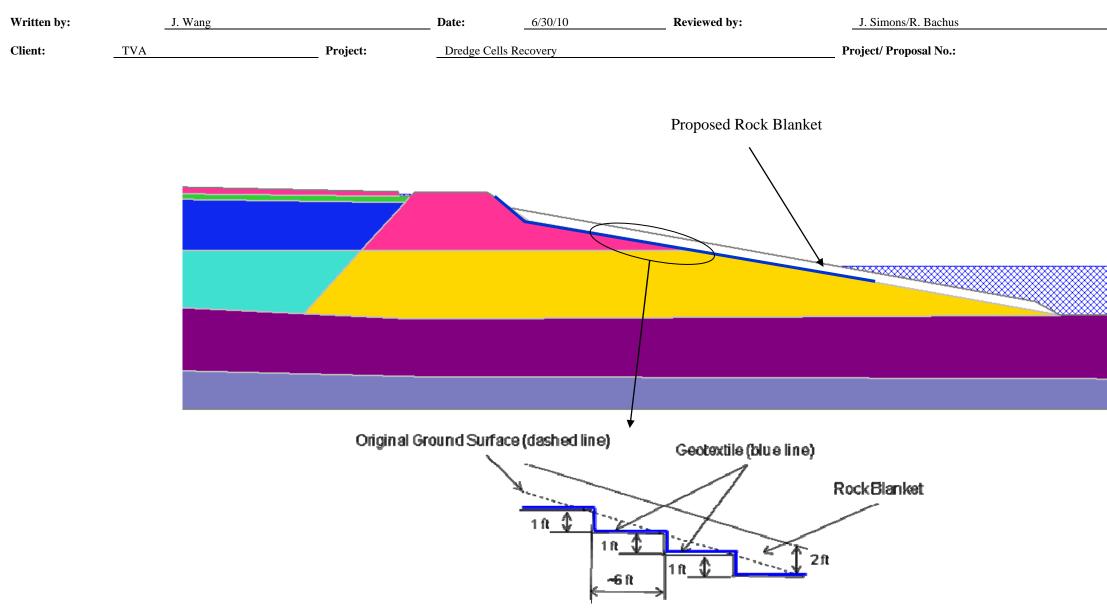


Figure 22. Conceptual Rock Blanket Design for East Dike

Geosyntec[>]

Page	44	of	49
	Date:	6/30/10	
GR4327	Tasl	k No.:	105

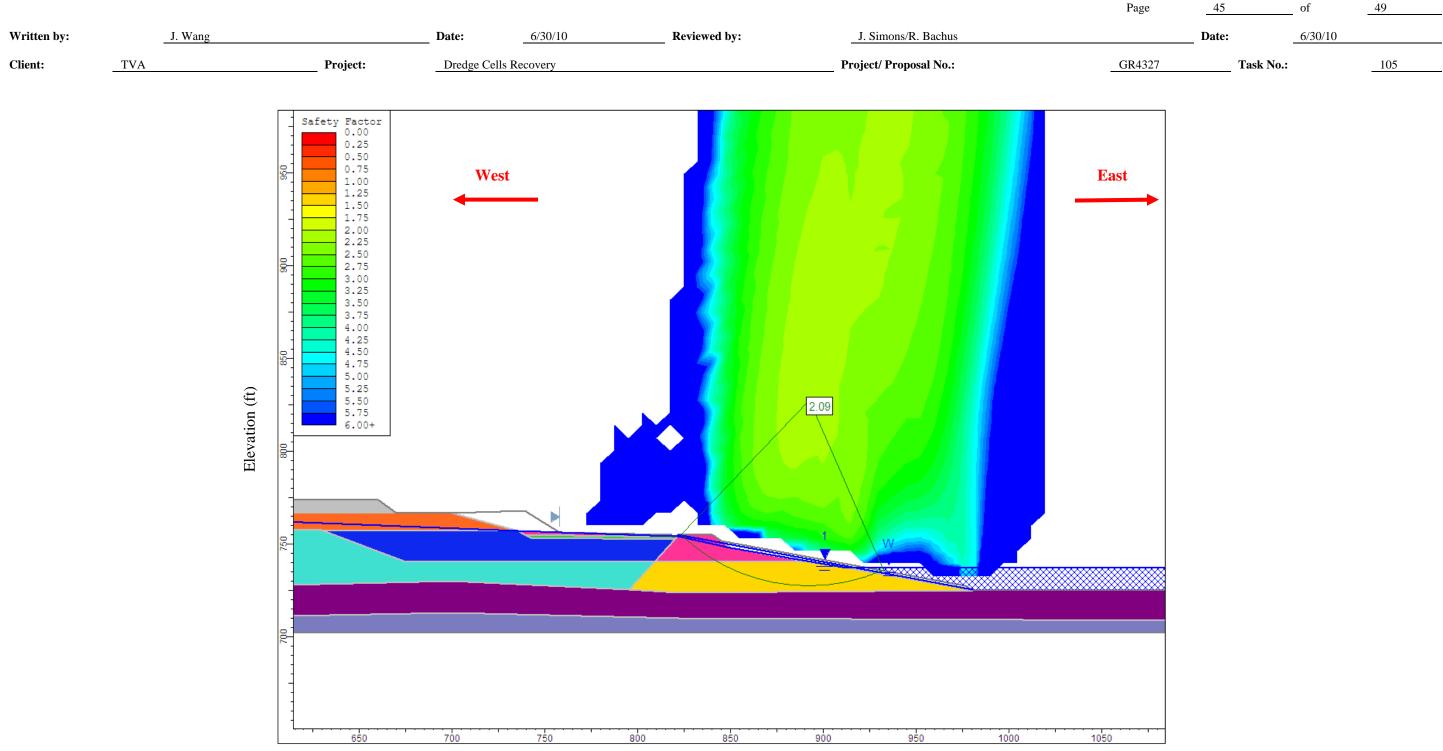


Figure 23. Results of Stability Analysis (Based on Conceptual Rock Blanket Design, Lower Dike Fill Water Pressure 0.5 ft above Ground Surface Cross Section A-A)

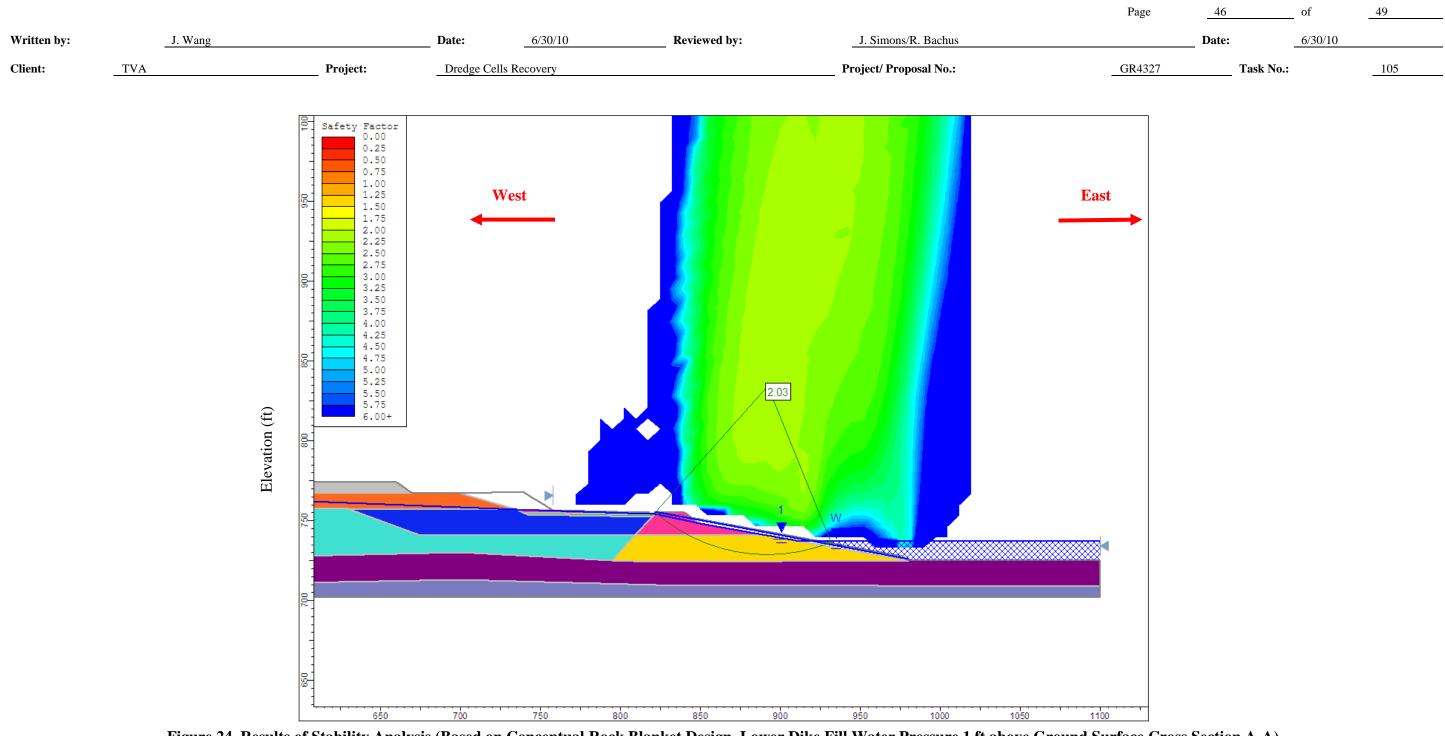


Figure 24. Results of Stability Analysis (Based on Conceptual Rock Blanket Design, Lower Dike Fill Water Pressure 1 ft above Ground Surface Cross Section A-A)

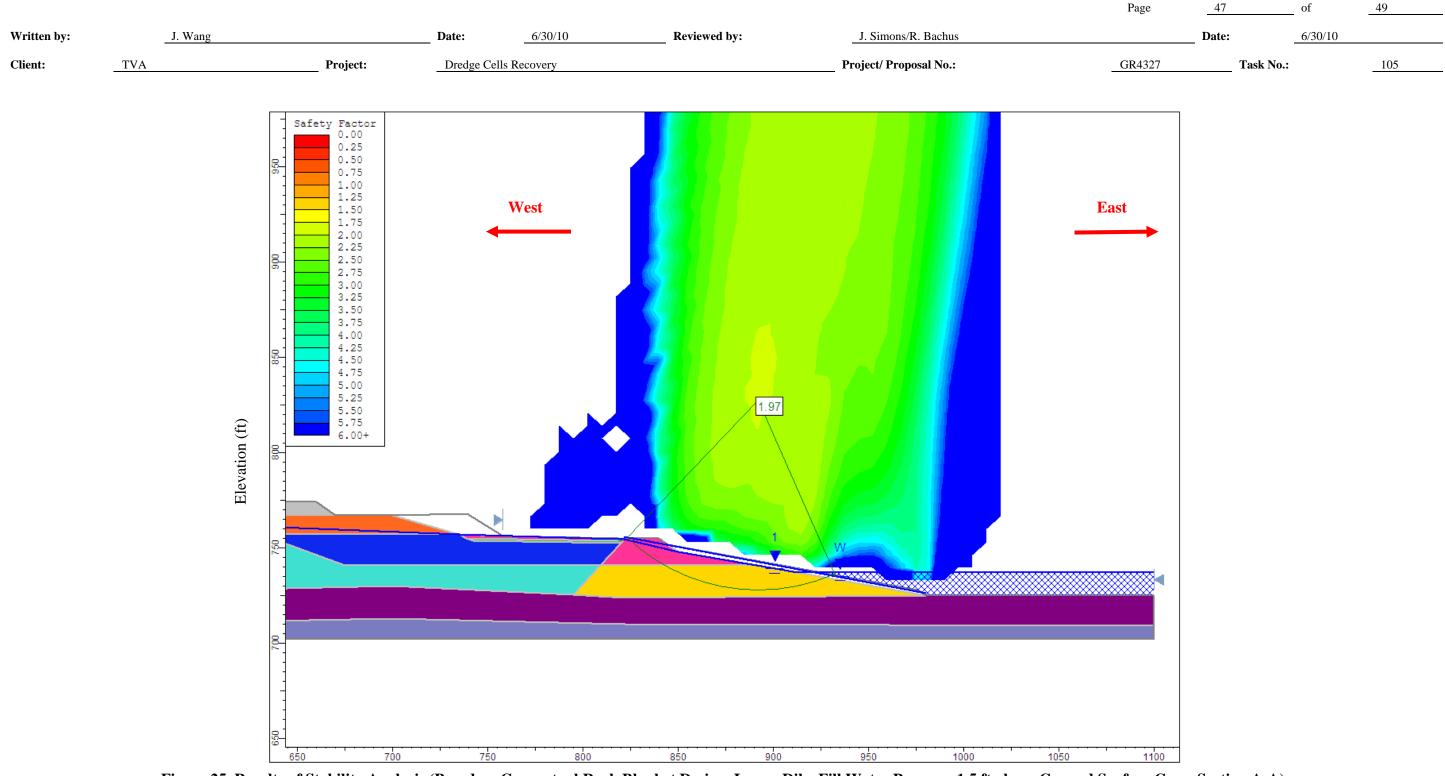


Figure 25. Results of Stability Analysis (Based on Conceptual Rock Blanket Design, Lower Dike Fill Water Pressure 1.5 ft above Ground Surface Cross Section A-A)

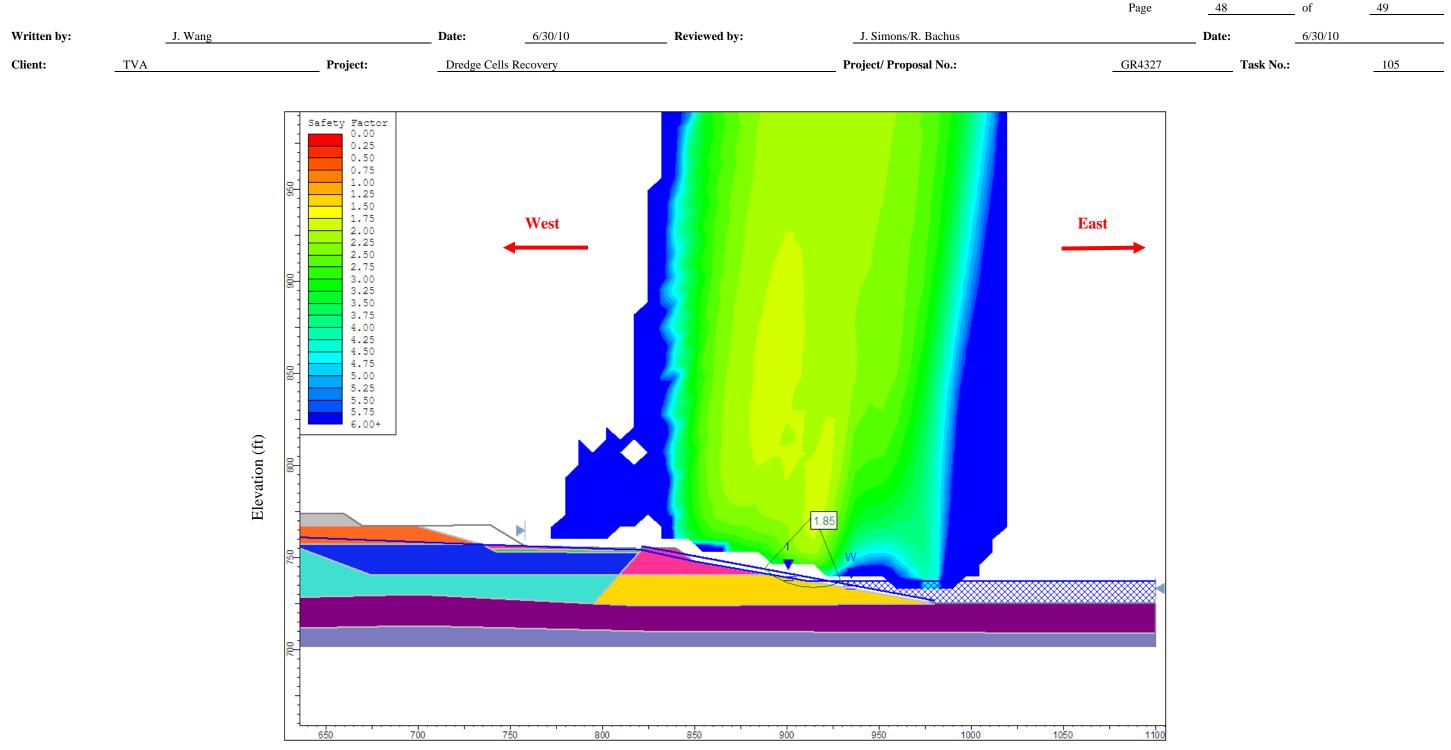


Figure 26. Results of Stability Analysis (Based on Conceptual Rock Blanket Design, Lower Dike Fill Water Pressure 2 ft above Ground Surface Cross Section A-A)

APPENDIX A – BORING LOGS

ſ	D E	SOIL CLASSIFICATION	L	E	SA	MPLES	PL (%)	NM (%)	LL (%)	
	P T	AND REMARKS	E G	L E	I D			▲ FINES (%)	e	
	H	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	E N	v				SPT (bpf)		
	(ft)	SYMBOLS AND ABBREVIATIONS BELOW.	D	(ft)	T F	1st 6" 2nd 6" 3rd 6"	10 20 3	30 40 50 60	70 80 90	100
F	- 0 -	TOPSOIL WITH ROOTS AND GRASS	/////	757.0 -	SPT-1	2-2-3	-•			_
ŀ	_	SILTY CLAY WITH CHERT, ROOTS AND WOOD			SPT-2	1-2-3				-
F		FRAGMENTS - FILL FIRM, WET, GRAY, GRAVEL - FILL		¥ -	SPT-3	3-9-11	F N +			
t	- 5 -	NOTE: A THIN LAYER OF BOTTOM ASH AT BOTTOM OF SPT-4		752.0 -	SPT-4	5-6-5				5
╞	-	LOOSE TO VERY FIRM, BLACK, WET, SILTY SAND (BOTTOM ASH) WITH TRACE SILT - FILL		} .	SPT-5	1-2-5				-
Ę					SPT-6	13-14-16	[]]	•		
┢	- 10 -			- 747.0 -	- SPT-7	9-17-13	+++	•		10
F				j -	SPT-8	5-11-13	F 🛉			-
ŀ	-				- SPT-9	11-10-10	E I ♥			- I
┝	- 15 -	LOOSE, BLACK, WET, BOTTOM ASH WITH TRACES OF		742.0 -	SPT-10	**				15
E	· -	SLT-FLL			SPT-11	3-4-4	t ¶			
╞	-			}	-		-			-
þ	- 20 -			- 737.0 -					+	20
╞	-			} .						-
F	-			£ .			F II I			-
E	- 25 -									25
+					-		-			-
Ę	-	STIFF TO VERY SOFT, WET, BLACK, SILT (FLY ASH), WITH TRACE BROWN TO GRAY, SILTY CLAY - FILL			SPT-12	2-4-5				
ŀ		WITH TRACE BROWN TO GRAT, SELTT CLAT - FEL			SPT-13	**				
ļ	- 30 -			- 727.0 -	SPT-14	WOH	•			30
ŀ		VERY SOFT TO FIRM, GRAY, MOIST, SILTY CLAY WITH REDDISH-ORANGE MOTTLING AND IRON			SPT-15	woн	┢			-
F	-	STAINING - ALLUVIUM			UD-1	2.0-2.0				
E	- 35 -			722.0 -	SPT-16	0-0-2				35
-					SPT-17	4-6-9	F			-
t	_			 	SPT-18	*				
┝	- 40			717.0 -	SPT-19	**				40
3			<u></u>		SPT-20	**				
4/29/10	-			ः 	SPT-21	2-3-4	\downarrow			-
	- 45 -			712.0 -	SPT-22	4-5-6				45
GIBB.GDT	-	VERY LOOSE TO FIRM, GRAY, WET, SILTY SAND ALLUVIUM			SPT-23	woн				
×				<u>-</u>	SPT-24	woн	$\left\{ \left \right. \right $			-
ALT.GPJ LAW	- 50		E	- 707.0 -		2				50
T.GP.	-			<u>.</u>	SPT-25	WOH-1-1				-
	-	VERY HARD, GREENISH GRAY TO BLUISH BLACK,			SPT-26	2-3-17	[` ₽¬¬	╆╍┾╍┾╍┝╸		1
10	-	WET, WEATHERED SANDSTONE AND WEATHERED		702.0	SPT-27 SPT-28	61-25-54 100/0.1	$\left \right $			
3043101017	- 55	BORING TERMINATED AT 54.1'		- 702.0 -			-			- 55
3043	-									1
Solt					$\left \right $		$\left \right $			-
мГ	- 60		1	697.0 -	<u>ı I</u>		0 10 20 3	30 40 50 60	70 80 90	100
ſ						OH TEST	DOBDYC	DECORD		
1	REMAR				<u> </u>	OIL IESI	BORING	RECORD		
		PERFORMED USING AN AUTOMATIC HAMMER.	P	ROJEC	T: TV	A Kingston	Seen Area			
				NUDEC	 1 V /	1 ISING STOLL				
			D	RILLEI	D: Mar	ch 31, 2010)	BOI	RING NO	.: A-1
				ROJ. NO	D.: 304	3-10-1017			PAGE 1	OF 1
		RD IS A REASONABLE INTERPRETATION OF CE CONDITIONS AT THE EXPLORATION Driller : Tri-State	i 🥅			AAA 🖚				
L	OCATION	S AND AT OTHER TIMES MAY DIFFER. Logged By: N.J.S.	1					CTEC		
п	NTERFACI	ES BEWEEN STRATA ARE APPROXIMATE. NS BETWEEN STRATA MAY BE GRADUAL. Checked By.	1 Ⅰ∟						-	

Driller : Tri-State
Logged By: N.J.S.
Checked By:

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	S I D	т	IPLES N-COUNT	I	PL (%)		IM (%			%)	
	T H (ft)	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	E N D	V (ft)	D E N T	Y P E	1st 6" 2nd 6" 3rd 6"	1	0.20) 20	● S	SPT (b	pf)	0 80	00 1	00
\vdash	0 -	FIRM TO VERY STIFF, BROWN, MOIST, SILTY CLAY -		- 755.0 -	SPT-1		5-12-16	1	0 20	<u> </u>	40	- 30		1 80	90 1	
F	-	FILL FIRM, MOIST, SILTY SAND (BOTTOM ASH) - FILL								Δ						
F	-				SPT-2	222	10-13-7	-	\square	'					-	
Ē	- 5 -	STIFF TO FIRM, GRAVISH BROWN, MOIST TO WET, SILTY CLAY WITH SHALE FRAGMENTS - FILL		- 750.0 -	SPT-3	222	4-3-7	- •	L					\perp		5
F	-				SPT-4	<u> </u>	8-8-7	-	T						-	
Ę	-				SPT-5	5 55	4-6-8		₹							
F	-				SPT-6	555	6-8-11	-	1						-	
F	10 -			— 745.0 —	SPT-7	555	9-12-8	_)				-		10
F	-				SPT-8	844	3-8-4	-	ੑੑ						-	
E	-	- 			SPT-9	222	8-12-13			?						
⊢	15 —	VERY SOFT TO FIRM, YELLOWISH BROWN, WET.		- 740.0 -	SPT-10	222	7-9-11		_)		_	+		_	15
E	-	SILTY CLAY WITH WEATHERED SHALE FRAGMENTS - FILL			SPT-11	699	2-2-3	t¶								
F	-	- FILL			-	****	WOH-WOH-1	F/								
ŀ	-			725.0	SPT-13		0-1-2	•							-	20
F	20 -			- 735.0 -	SPT-14		WOH	Þ.							-	20
F	-				SPT-15		WOH								-	
È	-				SPT-16		WOH									
\vdash	25 —			— 730.0 —	SPT-17		WOH-WOH-1	$\left - \right $				_		+		25
E	-				SPT-18		WOH-1-1	•								
╞	-				SPT-19		WOH								-	
Ŀ	30 -			- . - 725.0 -	SPT-20		WOH-2-1	è							-	30
+	-	VERY SOFT TO STIFF, GREENISH GRAY, WET, SILTY CLAY / CLAYEY SILT - ALLUVIUM			SPT-21		WOH-WOH-1	4							-	
F	-				SPT-22		WOH	5							-	
F	-				SPT-23		WOH									
┢	35 —			- 720.0 -	SPT-24		WOH					_			_	35
F	-				SPT-25		1-3-6		,							
ŀ	-				SPT-26		2-4-6	-]							-	
Ē	40 -			- 715.0 -	SPT-27	222	2-3-7							\square		40
ŀ	-				SPT-28	新新教	1-4-5	-							-	
29/10	-				SPT-29		4-3-2	t 🖌								
14	-				SPT-30		WOH	\mathbb{Z}							-	
	45 -	VERY LOOSE TO LOOSE, WET, GREENISH, SAND -		- 710.0 -	1	6999	WOH-WOH-3	M				+		+		45
GB-	-	ALLUVIUM			SPT-32	222	1-2-7	- \							-	
¥.	-	VERY HARD, DARK GRAY, DRY TO MOIST, HIGHLY			SPT-33	222		- 1	\frown	\neg					-	
36	50 -	WEATHERED SANDSTONE - RESIDUUM		- 705.0 -	SPT-34	222	1-12-22 17-100/0.1					+	┶╍┥	-+-		50
E-1-G	-	BORING TERMINATED AT 50.2'			-			-							-	
01 ALT.GPJ LAW GIBB.GDT	-]			FI								
6	-				-										.	
	55 -			— 700.0 — -	1									+	<u> </u>	55
3043101017	-				-										.	
	-			 -	1			Εl								
SOL	60 -			C 695.0 -					0 20) 30	40	50	60 7	0 80	90 1	
_								- 1	v 20	, 50	10	50			50 I	
														00000 0000		000000000000000000000000000000000000000

	RD PENETRATION RE			SOIL TEST BO	DRING RECORD	
PERFOR	MED USING AN AUTO	MATIC HAMMER.	PROJECT: 7	TVA Kingston Seep	Area	
			DRILLED: N	March 29, 2010	BORING NO). : A-2
			PROJ. NO.: 3	3043-10-1017	PAGE 1	OF 1
THIS RECORD IS A REASONAB SUBSURFACE CONDITIONS AT LOCATION. SUBSURFACE CON LOCATIONS AND AT OTHER T INTERFACES BEWEEN STRAT. TRANSITIONS BETWEEN STRA	THE EXPLORATION IDITIONS AT OTHER IMES MAY DIFFER. A ARE APPROXIMATE.	Driller : Tri-State Logged By: J.C.M Checked By:		💋 M	ACTEC	

D E	SOIL CLASSIFICATION	L E	E L			IPLES N-COUNT	F	PL (%	6)	1	•) MN	6)	L	.L (%)	
P T	AND REMARKS	G E	Ĕ	I D	T Y					A 1	FINES	(%)				
н	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	N		E N	P	ق ق				•	SPT (bp f)				
(ft)	SYMBOLS AND ABBREVIATIONS BELOW.	D	(ft) 747.0	T	E	1st 6" 2nd 6" 3rd 6"	1	0 2	0 3() 40	50	60	70 8	30 9	0 10	00
° -	SOFT TO STIFF, DARK GRAY, MOIST TO WET, SILTY CLAY / CLAYEY SILT WITH WEATHERED SHALE		— 747.0 — - -	SPT-1		1-2-1	•								_	
-	FRAGMENTS, WOOD, AND ROOTS - FILL			SPT-2		4-4-4	-								-	
_				SPT-3	223	1-3-5	ΕI									
5 —	-		- 742.0 -	SPT-4	<u> 22</u>	4-7-8						_		_		5
+	VERY STIFF TO VERY SOFT, WET, BROWN, CLAYEY			1	<u> </u>		-	I							-	
1	SILT TO SILTY CLAY WITH WEATHERED SHALE FRAGMENTS - FILL			SPT-5	222	4-6-10		∕₽∣								
-	TRADIENTS - TEE			SPT-6	644	2-2-2	1								-	
10 -			- 737.0 -	SPT-7	<u> </u>	0-0-1	*							+		10
]				UD-1		0.6-2.0	Ĩ I									
-				SPT-8		WOH	┟╽								-	
15			 - 732.0	SPT-9	<u> </u>	WOH	I								-	15
				SPT-10	222	WOH	[]									
-				1	644		FI								-	
				SPT-11	644	WOH (I]	
20 -			- 727.0 -	SPT-12	222	WOH					_	_	-	-	\vdash	20
-				SPT-13		0-1-1	1									
]	VERY SOFT TO FIRM, DARK GRAY, MOIST TO WET,			SPT-14	222	WOH	•									
-	SILTY CLAY TO CLAYEY SILT WITH WEATHERED SHALE FRAGMENTS - ALLUVIUM			SPT-15		WOH	•								-	
25 _			- 722.0 -	SPT-16		WOH	•									25
-				SPT-17		0-0-2	è l								-	
-				SPT-18		1-2-4	Fèl								-	
30 -			 - 717.0	SPT-19		2-5-8		╸								30
-				SPT-20		2-5-9	-								-	
_				SPT-21	222	2-3-5		7								
]					222		[]									
35 —			- 712.0 -	SPT-22	223	3-4-5	H	'					-	+		35
		22		SPT-23	223	WOH										
-	VERY LOOSE TO DENSE, DARK GRAY, WET, SILTY			SPT-24		WOH	•								-	
40	SAND WITH WEATHERED SHALE FRAGMENTS - ALLUVIUM			SPT-25	222	WOH	•								-	10
40 -	NOTE: N-VALUE IN SPT-29 WAS INFLATED BECAUSE		— 707.0 — - -	SPT-26	222	WOH	F									40
-	OF THE PRESENCE OF REFUSAL MATERIAL.			SPT-27		0-0-13	$\left \right $	•							-	
_				SPT-28 SPT-29		4-8-16	t	1	€	-+-	_+_					
45 -	AUGER REFUSAL AT 44.35'		- 702.0 -	SPT-29		100/0.3					_		+	—	F	45
-							+								-	
1																
-							+								-	
50 _			— 697.0 —							+		-		1		50
]]	
-							+								-	
55 -			- - — 692.0 —	1												55
									T	T				1		
-							+								-	
1				1			t I									
60			- 687.0 -				0 1					60				

REMARKS: STANDARD PENETRATION RES PERFORMED USING AN AUTON		SOIL TEST BORING	GRECORD
FERFORMED USING AN AUTOM	TATIC HAMMER.	PROJECT: TVA Kingston Seep Area	
		DRILLED: April 1, 2010	BORING NO.: A-3
		PROJ. NO.: 3043-10-1017	PAGE 1 OF 1
THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE CRADUAL.	Driller : Tri-State Logged By: N.J.S. Checked By:	// MAC	CTEC

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	I		IPLES N-COUNT]	PL (%)		(%) O		LL (%)	
	T H	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	EN	V	D E	Y P	- 5.5					VES (% T (bpf)			
	(ft)	SYMBOLS AND ABBREVIATIONS BELOW.	D	(ft) 	N T	E	1st 6" 2nd 6" 3rd 6"	1	0 20	30		50 60		80 90) 100
-	- 0 -	FIRM, YELLOWISH RED, MOIST, SILTY CLAY WITH CHERT, LIMESTONE, AND ROOT FRAGMENTS - FILL		- /39.0 -	SPT-1		2-2-3	-•							_
Ę	-	VERY FIRM TO VERY LOOSE, BLACK, WET, SILTY COARSE SAND (BOTTOM ASH) WITH COAL			SPT-2		5-11-10	È	\supset						-
F	- 5 _	FRAGMENTS - FILL		 754.0	SPT-3		6-8-7	F							5
-	-				SPT-4	<u> </u>	6-9-11	-	Ì	$\overline{\mathbf{V}}$					
Ę	-				SPT-5	222	16-17-10	È		<u>)</u>					-
ŀ	- 10 -			 749.0	SPT-6 SPT-7	555	3-5-11 4-5-8	-	Z						10
-	- 10 -				SPT-8	555	6-6-6	-	I						- 10
F	-				SPT-9	844	8-9-9	Ę	\sum						-
F	- 15 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		 744.0	SPT-10		2-2-2								15
-		¥ 			SPT-11		4-4-5	-)							- 13
F	-	LOOSE TO VERY LOOSE, DARK GRAY, WET, SILT (FLY ASH) - FILL			SPT-12		2-3-4	ţ							-
F	- 20 -			 	UD-1		2.0-2.0	E							20
-	20 -				UD-2		2.0-2.0	$\left - \right $				ΙT			-
F	-			 	UD-3		2.0-2.0								
F	- 25 —			 	SPT-13		5-7-3	E							25
F					SPT-13	222	WOH	7				$ \top$			- 23
Ę	-				SPT-15	222	0-1-1	Ŀ							-
-	- 30 -	VERY LOOSE TO LOOSE, DARK BROWN, WET, SILTY SAND WITH SANDSTONE FRAGMENTS - ALLUVIUM		 729.0	SPT-16		WOH	ŧ.							
-	- 50 -				SPT-17		2-3-6	Ð	•						
Ę	-				SPT-18		2-2-2	Í							-
F	- 35 -			 724.0	SPT-19	555	1-2-3	ŀ							35
F	- ,, -				SPT-20	222	WOH-2-2	-							
F	-				SPT-21	222	1-2-3	1							-
F	- 40			 719.0	SPT-22 SPT-23	約約 約	1-1-2 1-4-5	ß							40
F	- 40 -			- /19.0 -	SPT-24	222	1-4-5								
4/29/10	-				SPT-25	新新教	1-0-1	I							-
DT 4	- 45 -			 	SPT-26	222	WOH-2-4	Ð							45
BB.G				- /14.0 -	SPT-27		1-4-2	- •							-
하	-	VERY HARD, LIGHT BROWN GRAY, WEATHERED SANDSTONE - RESIDUUM			SPT-28	222	17-100/0.1	È						††	•
TAV	- 50	AUGER REFUSAL AT 47.1'		 709.0				-							50
I.GP	- 50 -			- /09.0 -				-							
AL.	-							Ę							-
12_0	- 55			 704.0				-							55
3043101017_01_ALT.GPJ_LAW_GBB.GDT	- ,, -							-							-
	-							Ę							-
Solt	- 60 -			 - 699.0				-							-
_	00			077.0				0 1	0 20) 30	40	50 60	70	80 90) 100
						S(DIL TEST	BC	RE	NG I	REC	ORD			
ŀ	REMAR	KS: STANDARD PENETRATION RESISTANCE TESTING PERFORMED USING AN AUTOMATIC HAMMER.													
			 P R	OJEC	Г: Т	VA	Kingston	Seep	Are	a					
				пте		••	1 2010					no	DDV		D. D.1
			D F	CILLEI	J: Ap	pril	1, 2010					RO	KIN	G N(D.: B-1
				ROJ. NO	D.: 30)43-	-10-1017						PAC	JE 1	OF 1
	HIS RECO	RD IS A REASONABLE INTERPRETATION OF								-					
SU	JBSURFA OCATION	CE CONDITIONS AT THE EXPLORATION Driller : Tri-State USUBSURFACE CONDITIONS AT OTHER					21 N		4	\square	T)	E(7		ĺ
D	TERFACI	S AND AT OTHER TIMES MAY DIFFER. ES BEWEEN STRATA ARE APPROXIMATE. NS BETWEEN STRATA MAY BE GRADUAL. Checked By.	j [$\underline{\sim}$			_		

ſ	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	I	AN T	IPLES N-COUNT		PL (?	%)	•	NM FIN	(%) ES (%	6)	LL	(%) 9	
	T H	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	E N	v	D E N	Y P	6" [6"						Г (bpf				
	_ (ft) _	SYMBOLS AND ABBREVIATIONS BELOW.	D	(ft) - 753.0 -	Т	E	1st 6" 2nd 6" 3rd 6"	1	0 2	0 3	04	0 5	0 60	0 70	80	90	100
		VERY STIFF TO SOFT, BROWN TO DARK GRAY, MOIST TO WET, SILTY SANDY CLAY WITH			SPT-1		5-8-13	F		•							-
ŀ	· -	WEATHERED SHALE, WEATHERED CHERT AND LIMESTONE FRAGMENTS - FILL			SPT-2		12-10-10	Ľ									
╞		NOTE: SPT-5 REFUSED ON LARGE ROCK			SPT-3	<u> </u>	15-9-21	F									-
t	- 5 -	FRAGMENTS.		- 748.0 -	SPT-4		7-11-18							_			5
				<u> </u>	SPT-5	222	11-50/0.2	-								===	⇒♦
ŀ			Z		SPT-6		22-10-11	E	.	•							
	- 10 -			- 743.0 -	SPT-7		3-8-14			•							10
ŀ					SPT-8		3-8-9	F	6	1							-
		-		F .	SPT-9		3-6-9	F	6								
ł				- 738.0 -	SPT-10		5-7-6	-	6								15
ļ	- 15 - 			- /38.0 -	SPT-11		2-2-3	-•	1								- 13
ł				<u> </u>	SPT-12	224	2-3-2	ŀ									-
ļ	· -				SPT-13	6 55	1-1-2	Į.									1
┢	- 20 -	-		- 733.0 -	SPT-14		1-1-1	I						\rightarrow			20
ļ					SPT-15		1-1-2	1									
╞		-			SPT-16	222	1-1-2	I									-
t	- 25 -			- 728.0 -	SPT-17	222	WOH	7									25
+		VERY LOOSE TO LOOSE, BROWN, WET, SILTY SAND		-	SPT-18	222	WOH	I –									-
t		WITH OCCASIONAL ROUNDED PEBBLES - ALLUVIUM			SPT-19	<u> </u>	0-0-1	E									
				: - ·			WOH-WOH-2	Ŧ									-
ŀ	- 30 -	-		- 723.0 -	SPT-20	222	0-0-2										30
F					SPT-22	222	0-0-2	I									
ŀ				L .	SP1-22 SPT-23	222	1-3-3	Ľ									-
F	_ 35 _			- 718.0 -		222		Ľ									35
ł					SPT-24	222	3-3-4	ŀΤ									-
ļ					SPT-25	<u>\$\$</u>	2-3-3	ĪŢ									
┝		-			SPT-26	222	3-2-3	-7									-
t	- 40 -			- 713.0 -	SPT-27	<u> </u>	1-1-1	R									40
9/10		FIRM TO VERY DENSE, BROWN, WET, SAND WITH SANDSTONE AND SHALE FRAGMENTS - ALLUVIUM		: - ·	SPT-28		1-4-8	-	•								-
42	· -	NOTE: N-VALUES WERE INFLATED BY THE			SPT-29	1999	2-20-28	È			-		┝┼	+			1
GDI	- 45 -	PRESENCE OF SANDSTONE AND SHALE FRAGMENTS.		- 708.0 -	SPT-30	554	15-26-50/0.5	┣—		$\left - \right $		$\left - \right $		_	\rightarrow	7	≥4 5
BB.	· -				SPT-31	644	17-25-38	E						◄			1
01_ALT.GPJ_LAW_GIBB.GDT		VERY HARD, DARK GRAY, WEATHERED SHALE -		Ļ .	SPT-32	222	33-38-38	F							۲		-
ILA	 - 50	RESIDUUM BORING TERMINATED AT 48.0'		- - 703.0 -	1			Ľ_									50
e la		BORING TERMINATED AT 48.0			-									Τ	T	T	-
ALI				Ŀ.	1			t									1
				[.				F									
3043101017	- 55 -			- 698.0 -	-			<u> </u>	-								55
4310				[.]			F									
		-			-			F									-
SOL	- 60 -	1		693.0 -	1			t									1
_								0 1	10 2	:0 3	0 4	0 5	0 60) 70	80	90	100
						<u>s(</u>	DIL TEST	BC)RI	NG	RI	C)RF)			
	REMAR	KS: STANDARD PENETRATION RESISTANCE TESTING PERFORMED USING AN AUTOMATIC HAMMER.															

PROJECT: TVA Kingston Seep Area

DRILLED: March 27, 2010

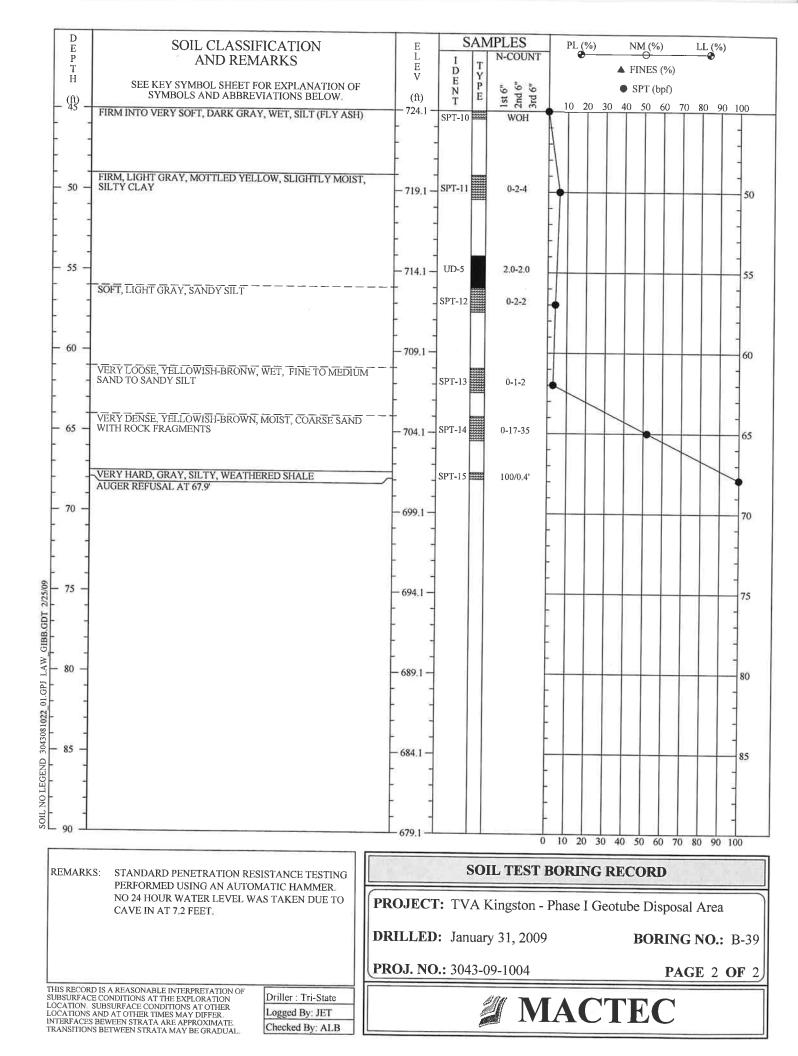
PROJ. NO.: 3043-10-1017

BORING NO.: B-2

PAGE 1 OF 1

THIS RECORD IS A REASONABLE INTERPRETATION OF SUBSURFACE CONDITIONS AT THE EXPLORATION LOCATION. SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND AT OTHER TIMES MAY DIFFER. INTERFACES BEWEEN STRATA ARE APPROXIMATE. TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

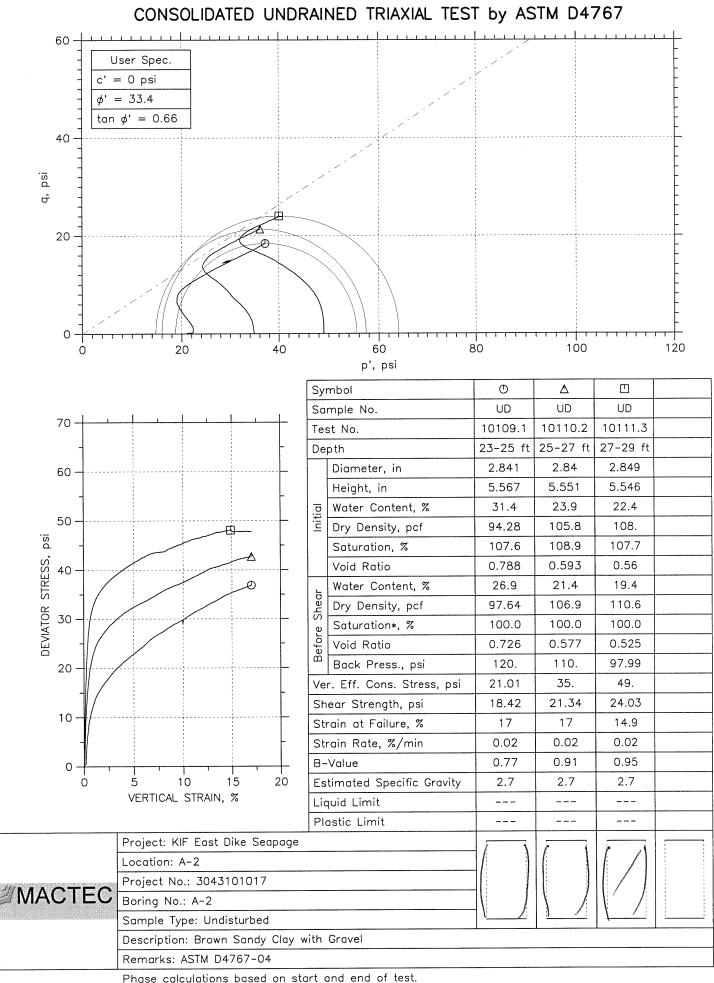
_	
	Driller : Tri-State
	Logged By: L.S.
	Checked By:

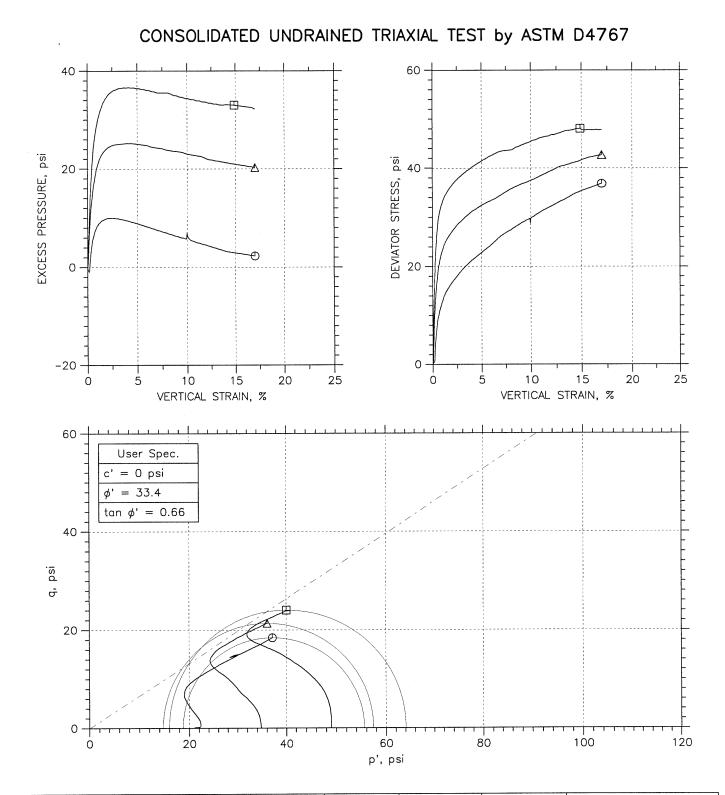


D /	SOIL CLASSIFICATION	L E	E L	I S		IPLES N-COUNT	1	PL (?	6)	N	M (%) ⊖		LL (%)	
P T	AND REMARKS	G E	E V	D	T Y					▲ FI	NES (9	%)			
Н	SEE KEY SYMBOL SHEET FOR EXPLANATION OF	N D		E N	P E	1st 6" 2nd 6" 3rd 6"				e s	PT (bp	f)			
_ (ft) _	SYMBOLS AND ABBREVIATIONS BELOW.		(ft) 748.0	Т		1st 2nd 3rd	1	0 2	0 3) 40	50 6	0 70) 80	90 10	00
	VERY STIFF TO SOFT, BROWN, MOIST TO WET, SILTY CLAY / CLAYEY SILT WITH WEATHERED SHALE AND			SPT-1		3-1-1					1			-	-
-	SANDSTONE FRAGMENTS - FILL	2		SPT-2		3-14-7	-	\square			1				
.]				SPT-3	222	2-5-10	Ę]	1
- 5 -	- <u>7</u>	Z	— 743.0 —	SPT-4		5-13-8	-	\vdash			+	$\left \right $	+	+	5
_				SPT-5	222	3-7-12	Ľ				1				
				SPT-6	<u> 新新新</u>	7-12-15	-	-	\mathbf{N}		1			-	-
- 10 -			 - 738.0	SPT-7	666	6-12-16	F		I						10
. 10				SPT-8	644	35-10-5	-		\sim					_	10
•				1	222		F	7						-	1
.]				SPT-9	644	5-6-5		7]]	1
- 15 -			- 733.0 -	SPT-10	222	3-4-4	H				+	$\left \right $	+	+	15
· -				SPT-11	222	5-3-2	17								
				SPT-12	644	2-2-1	P.							-	-
- 20 -			 728.0	SPT-13	<u>644</u>	2-1-2	•								20
. 20 _			- 120.0 -	SPT-14		3-2-3	•								20
-	SOFT TO STIFF, RED-BROWN TO RED-ORANGE,	<u>VIIII</u>		SPT-15		4-2-2	•							-	1
.]	MOIST TO WET, CLAYEY SILT - ALLUVIUM			SPT-16		1-2-1	١Þ]	1
- 25 -			— 723.0 —	UD-1		2.0-2.0	\vdash				+		+	+	25
				SPT-17		4-5-6	[]								1
				SPT-18	222	3-7-7	-				1			-	-
- 30 -	LOOSE TO DENSE, DARK BROWN, WET, SILTY SAND	憲章	 - 718.0	SPT-19	553	5-6-7	-	I						-	30
	WITH WEATHERED SHALE AND SANDSTONE FRAGMENTS - ALLUVIUM		- /10.0 -	SPT-20	644	5-5-3	-	7						-	
• -				1	222		Ľ				1				1
.]				SPT-21	6,6,6	1-1-1	F.]]	1
- 35 -			- 713.0 -	SPT-22	222	7-4-4	H				+	$\left \right $	+	+	35
· -				SPT-23	<u> </u>	15-5-2	[•	┝							
· -				SPT-24	وتموتقوقة	5-10-29	F							-	-
- 40 -			 708.0	SPT-25	and the state	7-25-26	Ē				P				40
	VERY HARD, DARK GRAYISH BROWN, WEATHERED			SPT-20		31-35-100/0.3	-				1			-	
-	AUGER REFUSAL AT 40.3'						F								
.]							F]	
- 45 -			— 703.0 —											+	45
.]							Ę]]	1
							\vdash							-	-
- 50 -			 - 698.0				Ĺ								50
·							F							-	-
· -							Ľ								
. 4							-				1			4	-
- 55 -			- 693.0 -									\vdash	+	+	55
.]							F]	
-							-							-	
60			688.0 -				<u> </u>								1
							0 1	0 2	0 3() 40	50 6	0 70) 80	90 10	00
					91	DIL TEST	· P()RI	NC	REC	ORI	3			
REMAR	KS: STANDARD PENETRATION RESISTANCE TESTING PERFORMED USING AN AUTOMATIC HAMMER.						ЪX	211.1		NI .X			<u></u>	<u></u>	
	PERFORMED USING AN AUTOMATIC HAMMER.		OIEC	г. т	7Δ	Kingston S	Seer	Δr	ea						
			OJEC	1. 1	v A	Kingston	Seep	л	C a						
		D	RILLEI): A1	oril	6, 2010					BO	ORI	NGI	NO.:	B-3
				-	-										
			OJ. NO).: 30	043-	10-1017						PA	4GE	1 0)F 1
		-													
UBSURFA	RD IS A REASONABLE INTERPRETATION OF CE CONDITIONS AT THE EXPLORATION UNIVERSITY OF CONDUCTORS AT COMPARE	Í						٨							
UBSURFA LOCATION					1	N		A	C	T	E	C			

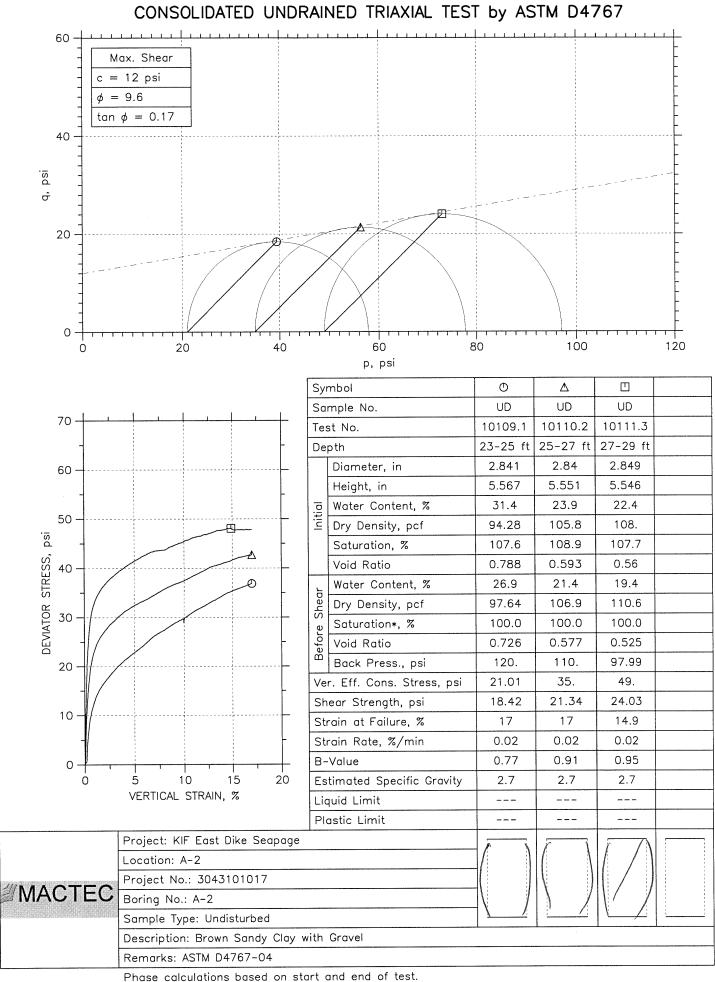
D E	SOIL CLASSIFICATION	E	S	AM	PLES	PL	(%)	NM	1 (%) Ə	LI	. (%)	
P T	AND REMARKS	L E	I D	T	N-COUNT				⊖ — — IES (%))	•	
Н	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	V	E N	Y P	6" 6"			• SP	T (bpf)			
- ^(ft) -	DRY, SILTY CLAY WITH GRANULAR-SIZED STONE FRAGMENTS	(ft) - 769.5 -	T	E	lst 6" 2nd 6" 3rd 6"	10	20 30	40 5	50 60	70 80	0 90 100	
2 N		-	SPT-1		1-2-3	-@					_	
	FIRM, DARK GRAY, DRY, SILT (FLY ASH) WITH A PEBBLE-SIZE		SPT-2		1-4-10	-					-	
		a k	SPT-3		7-7-7	ŀΙŤ					-	
- 5 -	FIRM, DARK GRAY, MOIST, SILT (FLY ASH) WITH A	- 764.5 -			1-1-1	1						
6	PEBBLE-SIZED FRAGMENTS OFFSET B-36 3.1 FEET NORTH WEST.		SPT-4		5-4-4						5	
2	DENSE, LIGHT GRAY, SLIGHTLY MOIST, SILTY SAND (BOTTOM		SPT-5		6-18-14		\searrow					
1	[]A5[]) +		SPT-6		7-12-16	-						
- 10 -	FIRM, DARK GRAY, MOIST, SILTY SAND (BOTTOM ASH) WITH GRANULAR TO PEBBLE-SIZED MATERIAL THROUGHOUT		SPT-7		5-8-9		И				1	
-		- 759.5 - 	51 1-7		5-0-7						10)
- - 15 -	SOFT, GRAY, WET, SILT (FLY ASH) WITH SILTY SAND (BOTTOM ASH)	- 754.5 -	SPT-8		1-1-2							5
1					- - -	\mathbb{E}					-	2
- 20 -	STIFF, VERY DARK GRAY, WET, SILTY SAND (BOTTOM ASH)	- - 749.5 —	SPT-9		0-6-9						20)
1	-										-	
- 25 -	LOOSE, VERY DARK GRAY, WET, SILTY SAND (BOTTOM ASH)	- - 744.5 —	SPT-10		1-2-3							
-	-					-					25	3
30 -	VERY LOOSE, BLACK TO VERY DARK GRAY, WET, SILTY SAND (BOTTOM ASH) WITH SLAG	- 739.5	SPT-11		1-1-1							
-	-	-		****							30	
35 -	-	- - 734.5 —	SPT-12		0-1-1							
-	-	-									35	
1		-	6		ł						-	
40 -	SOFT, DARK GRAY, WET, SILT (FLY ASH), WITH A FEW COAL /	729.5	SPT-13		1-2-2							
-	-	-		333							40	
-	+	-			ŀ							
1		-			ŀ							
45 L	SOFT, DARK GRAY, MOIST, SILT (FLY ASH)	724.5	SPT-14		2-2-2						-	
					0	10 20) 30 -	40 50	60 7	70 80	90 100	
EMARK	S: STANDARD PENETRATION RESISTANCE TESTING	3801	5	SOL	LTEST	BORI	NG R	ECO	RD			
	PERFORMED USING AN AUTOMATIC HAMMER. B-36 ENCOUNTERED REFUSAL AT									1 4		
	OFFSET 3.1 FEET NORTHWEST.				ingston -		1 (160)					
		LLED)J. NO			29, 2009 -1004		9	B			0.: B-3	
S RECOR	D IS A REASONABLE INTERPRETATION OF Driller : Tri-State			- 0,								<u>ビ</u>
ATION.	SUBSURFACE CONDITIONS AT OTHER AND AT OTHER TIME'S MAY DIFFER S BEWEEN STRATA ARE APPROXIMATE. IS BETWEEN STRATA MAY BE GRADUAL.				I M		C7	NE				

D E P T	SOIL CLASSIFICATION AND REMARKS	E L E		T	IPLES N-COUNT	1	PL (%)		NM C FINE			L (%)	
Ĥ - (ft) -	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	V (ft) 	E N T	Y P E	1st 6" 2nd 6" 3rd 6"	_1	0 20		● SPT 40 50		70 8	0 90	100
 - 50 -	SOFT, DARK GRAY, MOIST, SILT (FLY ASH) FIRM, LIGHT GRAY, SLIGHTLY MOIST, SILT (FLY ASH)	- 719.5 -	SPT-15		0-2-3	-							50
	STIFF, MOTTLED BROWNISH-YELLOW AND LIGHT GRAY, SLIGHTLY MOIST, SILTY CLAY TO LIGHT GRAY SANDY SILT		UD-1 SPT-16		2.0-2.0 2-5-5	-		_					- 55
	(BOTTOM ASH) VERY LOOSE, VERY PALE BROWN, VERY MOIST, MEDIUM TO FINE-GRAINED SAND		SPT-17		1-0-1								- - - - 60
	DENSE, LIGHT YELLOWISH BROWN, MOIST, MEDIUM TO COARSE GRAINED SAND AND GRAVEL SIZED ROCK FRAGMENTS	- 704.5 -	SPT-18		3-9-25	- \							- - - - 65
	VERY HARD, DARK GRAY, MOIST, DARK GRAY, SLIGHTLY WEATHERED SHALE VERY HARD, DARK GRAY, MOIST, SHALE AUGER REFUSAL AT 67.4	- 699.5 -	SPT-19	5552	100/0,33'								70
1 2/25/09		 - 694.5 - 											- 75
01.GPJ LAW GIBB.GI		 				_							80
SOIL NO LEGEND 3043081022 01.GPJ LAW		 - 684.5 				_							- - - 85 -
SOIL NO LE		679.5 -				-	0 20	30 4	40 50	60	70 80	0 90	100
REMAR	KS: STANDARD PENETRATION RESISTANCE TESTING PERFORMED USING AN AUTOMATIC HAMMER.			so	OIL TEST	BO	RIN	G R	ECC	ORD			
	B-36 ENCOUNTERED REFUSAL AT APPROXIMATELY 6.0 FEET. THE BORING WAS OFFSET 3.1 FEET NORTHWEST,				Kingston -		ase I	Geo		ŕ			D
		PRILLEI PROJ. NO			ry 29, 2009 09-1004	y	5		В				B-36 OF 2
LOCATION LOCATION INTERFAC	IRD IS A REASONABLE INTERPRETATION OF C.C.E. CONDITIONS AT THE EXPLORATION S. SUBSURFACE CONDITIONS AT OTHER IS AND AT OTHER TIMES MAY DIFFER. ES BEWEEN STRATA ARE APPROXIMATE. DNS BETWEEN STRATA ARE APPROXIMATE. DNS BETWEEN STRATA MAY BE GRADUAL DNS BETWEEN STRATA MAY BE GRADUAL						10	27	L K	_	_		

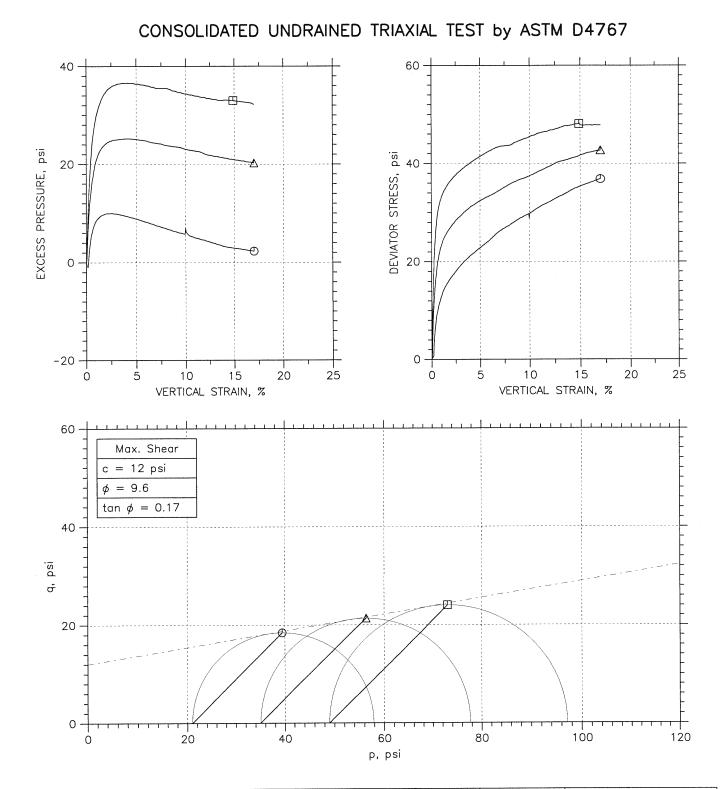

D E	SOIL CLASSIFICATION	Е	S	AN	IPLES	1	PL (%)	N	M (%)	LL	(%)	
P T	AND REMARKS	L E V	1 D	TY	N-COUNT		-			NES			•	
H	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	(ft)	E N T	P E	1st 6" 2nd 6" 3rd 6"				• S	PT (b	pf)			
(ft) 0 -	HARD INTO STIFF, GRAY, DRY TO SLIGHTLY MOIST, SILT (FLY	- 769.1 -	T	-	1si 2n 3r	1	0 20	30	40	50	60 7	0 80	90	100
	ASH)		UD-1		2.0-2.0	-								-
	-		1		1.17112/23./									1
1	-		SPT-1		7-12-20	-							×]
5 -		- 764.1 -	UD-2		2.0-2.0			4-	+			_		- 5
ş	-		SPT-2		5-6-7		Δ							
8	-		UD-3	*****	2.0-2.0	-]
10 -	VERY STIFF, GRAY, DRY TO SLIGHTLY MOIST, SILT (FLY ASH)	 759.1				-	N							2
9	-		SPT-3		9-14-12								1	10
3 3		.				-	X							-
į	VERY LOOSE, VERY DARK GRAY, WET, SILTY SAND (BOTTOM	 				t/								-
15 -	ASH) WITH COAL / SLAG FRAGMENTS	- 754.1 -	SPT-4		0-0-1		_		-					15
		- - -				8								-
														1
20 -	VERY LOOSE, VERY DARK GRAY, VERY MOIST, SILTY SAND (BOTTOM ASH), WITH COAL / ROCK FRAGMENTS		SPT-5		1-3-1	-								-
	(Derrouris), with cont / ROCK TRAUMENTS	- 749.1 - 	5F 1-5		1-5-1	1						+		20
	1					- \]
ļ						-1								-
25 -	LOOSE, BLACK, VERY MOIST, SILTY SAND (BOTTOM ASH), — — WITH ROCK / SLAG FRAGMENTS	- 744.1 -	SPT-6		3-5-4									25
				22222		-								-
_	-													-
	FIRM INTO LOOSE, BLACK, WET, SILTY SAND (BOTTOM ASH),					- 1]
30 -	WITH ROCK / SLAG FRAGMENTS	- 739.1 -	SPT-7		3-6-5	-	+	+-	+	$\left \right $		-	-	- 30
1						1								
- 14 - 12	-	-				- /								
35 —	-	- 734.1 -	SPT-8		2-2-3	-11							1	-
-	-	-		***		-								- 35
1	-				1									1
2	FIRM INTO VERY SOFT, DARK GRAY, WET, SILT (FLY ASH)	-												1
40 -		- 729.1 —	SPT-9		1-3-3	•					_	_	-	40
-	-	1			t									
-	-				-									
45]	UD-4: NO RECOVERY	- 724.1	UD-4		0.0-2.0								-	
		724.1			Ó	10	20	30 4	10 5	0 60	70	80	90 10	00
MARI		P.	5	501	LTEST	BOH	RIN	G R	ECO	ORI)			
	PERFORMED USING AN AUTOMATIC HAMMER	OIECT	, TT 7	A T?		DI	-		-		_	_	-	_
	CAVE IN AT 7.2 FEET.	UJEC I	1 I V	АK	ingston -	rna	se I (Geot	ube	Dis	posa	al Ar	ea	
		ILLED	: Jan	uary	31, 2009	1			E	BOR	INC	G NO). : 1	3-39
		OJ. NO	.: 304	3-0	9-1004						PA	GE	1 0	F 2
SURFA	RD IS A REASONABLE INTERPRETATION OF CE CONDITIONS AT THE EXPLORATION					_				-				
ATION.	SUBSURFACE CONDITIONS AT OTHER S AND AT OTHER TIMES MAY DIFFER. Logged By: JET				$I \mathbf{M}$			T	ľ	77				


	E	SOIL CLASSIFICATION	E	S	AM	IPLES	PL (%)	NM (%)	LL (%)
	P T	AND REMARKS	L E V	I D	TY	N-COUNT	v	▲ FINES (%)	
	H (ft)	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	(ft)	E N T	P E	lst 6" 2nd 6" 3rd 6"		• SPT (bpf)	
	- ^(ft) -	VERY HARD, DARK GRAY, DRY, SILT (FLY ASH) WITH	- 767.0 -				10 20 3	30 40 50 60	70 80 90 100
-	: :-	YELLOWISH-BROWN, SILTY CLAY WITH CRUSHED STONE VERY DENSE, GRAY, DRY, SILTY SAND (BOTTOM ASH) WITH		SPT-1		11-25-34			
ŀ	: 3	COAL / SLAG FRAGMENTS (NOTE: THE SPT VALUES APPEAR TO HAVE BEEN AMPLIFIED		SPT-2		31-43-45	-		
F	-	BY ROCK FRAGMENTS IN THE SAMPLE INTERVAL.)	ei -	SPT-3		23-26-45	-		
F	- 5 -		- 762.0 -	SPT-4		12-58-64			>>•
-				SPT-5		30-94-76			>>
Ē		DENSE, DARK GRAY, SLIGHTLY MOIST, SILTY SAND (BOTTOM ASH) WITH COAL / SLAG FRAGMENTS		SPT-6		22-23-23	-		
L	- 10 -	FIRM, DARK GRAY, MOIST, SILTY SAND (BOTTOM ASH) WITH	757.0-	UD-1		0.6-0.6			
÷	-	COAL / SLAG FRAGMENTS		SPT-7		11-10-10	- •		10
Ē	-			UD-2		0.3-0.8	-		
-	-	FIRM, DARK GRAY, WET, SILTY SAND (BOTTOM ASH) WITH COAL / SLAG FRAGMENTS	[]	SPT-8		2-5-12			
┢	- 15 -	FIRM, DARK GRAY, WET, SILTY SAND (BOTTOM ASH) WITH COAL / SLAG FRAGMENTS	- 752.0 -	SPT-9		6-6-8			15
-							- 11		
-	-	-							
F	-	FIRM, VERY DARK GRAY, WET, SILTY SAND (BOITOM ASH)				10202012020	-		
Ţ	· 20 -	WITH COAL / SLAG FRAGMENTS UD-3: NO RECOVERY	- 747.0 -	UD-3		0.0-1.2			20
-				SPT-10		4-10-7	[]		
-	-	UD-4:NO RECOVERY				0.000	- /		
	25 -	VERY LOOSE, BLACK, WET, SILTY SAND (BOTTOM ASH) WITH COAL / SLAG FRAGMENTS	 - 742.0	UD-4 SPT-11		0.0-2.0			
-	-					10-22-20	-		25
Ē							-		
Ę	1								
2/25/09	30 -	FIRM, DARK GRAY, MOIST TO WET, SILT (FLY ASH)	- 737.0 -	SPT-12		2-2-3	•		30
							-		
GIBB GDT									
N B	-	UD-5: NO RECOVERY		UD-5		0.0-2.0			
1 FA	35 -		- 732.0 -	SPT-13		1-1-4	•		35
01.GP			[]						
1022	-								
04308	40 -	VERY SOFT, LIGHT YELLOWISH-BROWN, VERY MOIST, SILTY CLAY		SPT-14		WOH	$\left\{ \left \right\rangle \right $		
	-		- 727.0 - 				-		40
SOIL NO LEGEND 3043081022 01.GPJ LAW							$\left\{ \left \right \right\}$		
	1			UD-6		0.0-2.0	1		-
۶Ľ	45 L	SOFT, BROWNISH-YELLOW, VERY MOIST TO WET, SANDY SILT	_ 722.0						
Γ						0	10 20 30	0 40 50 60 7	0 80 90 100
R	EMARI		12:081		SO	L TEST	BORING	RECORD	
		PERFORMED USING AN AUTOMATIC HAMMER.	OIFC	г. тv	А Т	lingston	Dhese I C	actuk - D'	
			OJECI	L. IV		singsion -	rnase I G	eotube Dispo	sal Area
			ILLED	: Jan	uar	y 31, 2009)	BORIN	G NO.: B-47
		חת	OJ. NC	1.20	12 (0 1004		~	
TU	IS RECO		UJ. NU	.: 304	+3-(9-1004		P	AGE 1 OF 2
111	BSUKPA	RD IS A REASONABLE INTERPRETATION OF CE CONDITIONS AT THE EXPLORATION SUBSURFACE CONDITIONS AT OTHER			4			TEC	
LO		S AND AT OTHER TIMES MAY DIFFER. Logged By: JET			e e	98(L \ /-			

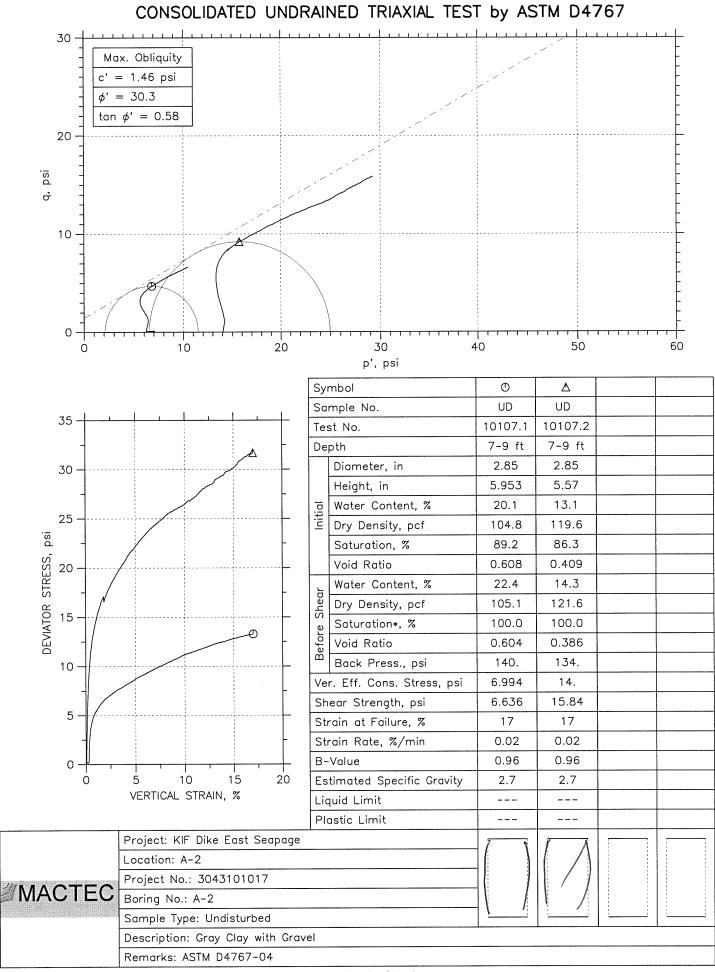
D E	SOIL CLASSIFICATION	E	S	AN	1PLES	PI	L (%)	N	M (%)		LL	(%)	
P T	AND REMARKS	L E V	l D	T Y	N-COUNT		÷			NES (*	
Н	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW.	v (ft)	E N	Y P E	1st 6" 2nd 6" 3rd 6"				• S	PT (bp	of)			
(ft) 43 –	UD-6: NO RECOVERY	- 722.0 -	T SPT-15		0-2-2	10 1	20) 30	40	50 6	50 7(0 80	90 1	00
	SOFT, BROWNISH-YELLOW, VERY MOIST TO WET, SANDY SILT					-								-
			1]
-	FIRM, REDDISH-YELLOW TO BROWNISH-YELLOW, WET, SANDY					-								-
50 -	SILT	- 717.0 -	SPT-16		2-3-2	+	-	-		+			-	- 50
]											
0.0	ia					-								-
-	LOOSE, BROWNISH-YELLOW, WET, SAND		SPT-17		0-2-4	-								1
- 55 -		- 712.0 -	511-17		0-2-4		\triangleleft							55
-						<u>-</u>		\searrow						-
						-								-
60 -	VERY DENSE, YELLOW AND DARK BROWN, SANDSTONE WITH SOME BROWNISH-YELLOW, SAND	- 707.0 -	SPT-18		21-32-37								_	60
1						-						\setminus		-
-	VERY HARD, DARK GRAY, WEATHERED SHALE												N	
65 -	AUGER REFUSAL AT 64.9'	- 702.0 -	SPT-19		40-100/0,4'		-	+	+	-				65
-														
						-								-
70						-								-
- 70 -		697.0 -												70
-		a: . d				-								-
-	-					-								-
- 75 -		- 692.0 -				Ē.								75
-		- 				-								-
-						[]								
80 -		- 687.0 -					-	_	-	-		_	_	80
		-												
]
-		-				-								-
85 -		- 682.0 -												85
-						-								-
		1 (1) (1)											·	1
90 _		 - 677.0												1
	1				_	0 10	20	30	40	50 6	0 70	0 80	90 1	00
EMAR	KS: STANDARD PENETRATION RESISTANCE TESTING			SO	IL TEST	BOI	RIN	IG I	REC	OR	D			
	PERFORMED USING AN AUTOMATIC HAMMER,	OIEC	T . (7)	7 4	V.	DI					-			
		OJEC	1: 1/	γA	Kingston	- Pha	se l	i Ge	otub	e Di	spos	sai A	rea	
		RILLEI	D: Jai	ıua	ry 31, 200	9				BOI	RIN	GN	(0.:)	B-4′
					•									
		KUJ. NO	J.: 30	43-	09-1004						PA	AGE	20)F (
BSURFA	RD IS A REASONABLE INTERPRETATION OF CCE CONDITIONS AT THE EXPLORATION & SUBSURFACE CONDITIONS AT OTHER					TA			ויד	Γ.				
CATION	ES BONGACE CONDITIONS AT OTHER IS AND AT OTHER TIMES MAY DIFFER ES BEWEEN STRATA ARE APPROXIMATE.					LA	74							


APPENDIX B – LABORATORY TESTING RESULTS

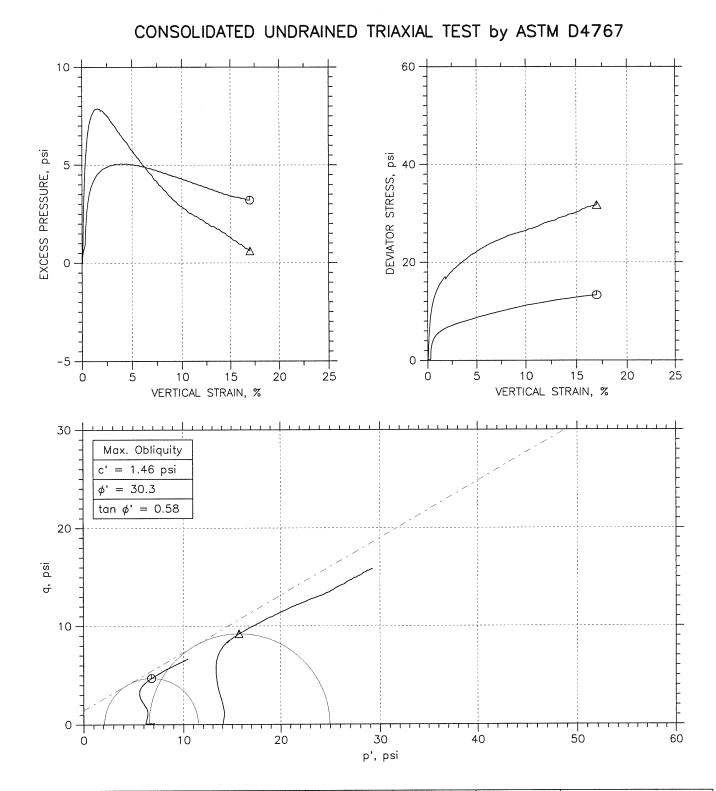
Tue, 20-APR-2010 13:53:28

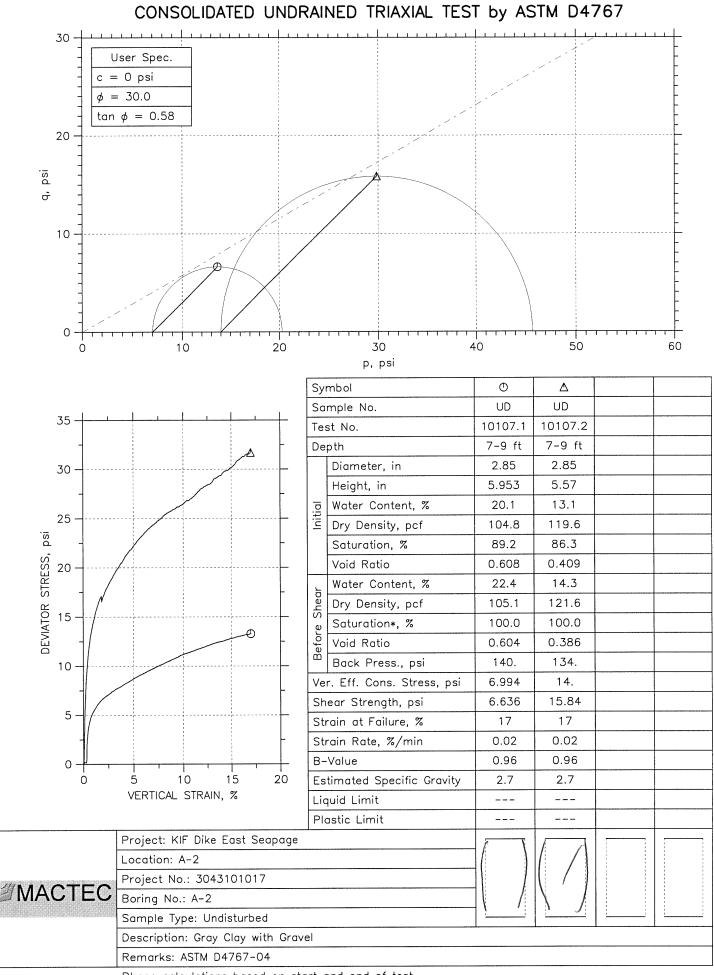


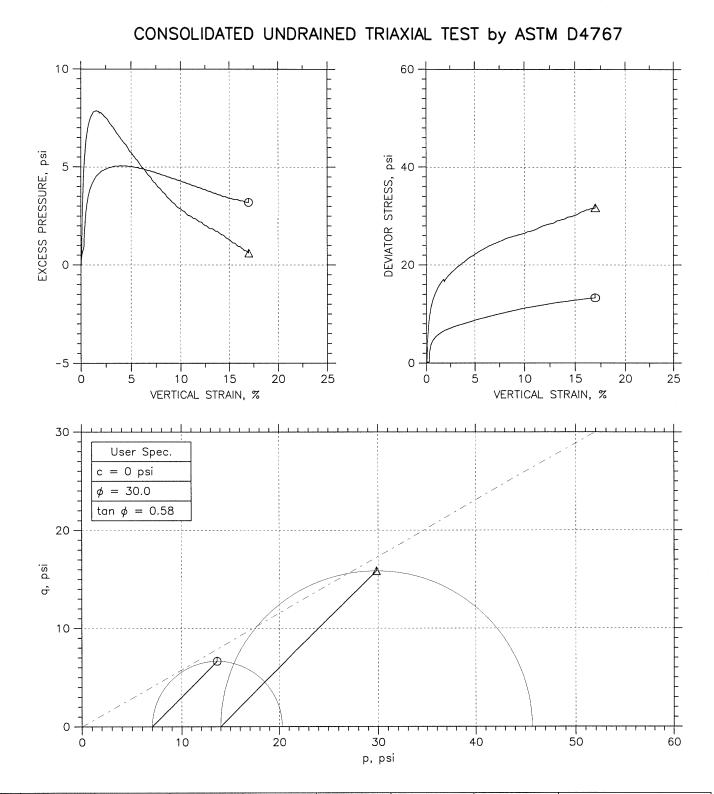
	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	UD	101	09.1	23-25 ft	JW	4/13/10			10109.1_2546.dat
	UD	101	10.2	25-27 ft	JW	4/13/10			10110.2_2547.dat
	UD	101	11.3	27-29 ft	JW	4/13/10			10111.3a_2580.dat
					<u> </u>				
110		.~	Project:	KIF East Dik	e Seapage	Location: A-	-2	Projec	t No.: 3043101017
21	MACTE	:C	Boring	No.: A-2		Sample Type	e: Undisturbed		
			Descrip	tion: Brown S	andy Clay wi	th Gravel			
			Remark	s: ASTM D476	67-04				

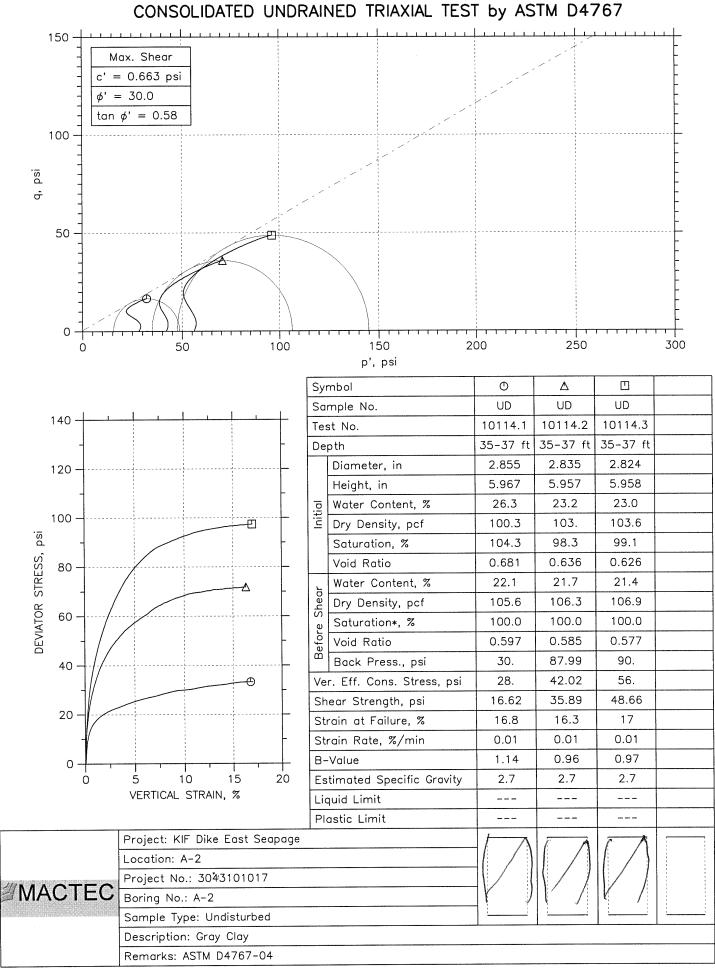


Tue, 20-APR-2010 13:53:36

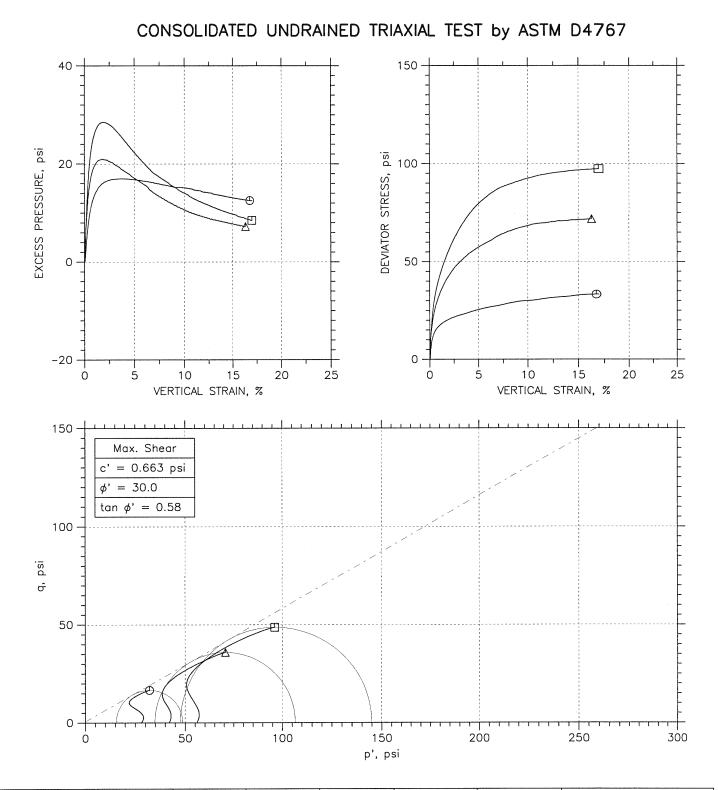

hase calculations based on start and end of test


	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	UD	101	09.1	23-25 ft	JW	4/13/10			10109.1_2546.dat
Δ	UD	101	10.2	25-27 ft	JW	4/13/10			10110.2_2547.dat
	UD	101	11.3	27-29 ft	JW	4/13/10			10111.3a_2580.dat
111		- ^	Project	: KIF East Di	ke Seapage	Location: A	-2	Proje	ect No.: 3043101017
	MACTE	:C	Boring	No.: A-2		Sample Typ	e: Undisturbed		
			Descrip	tion: Brown S	Sandy Clay w	ith Gravel			
			Remark	s: ASTM D47	67-04				

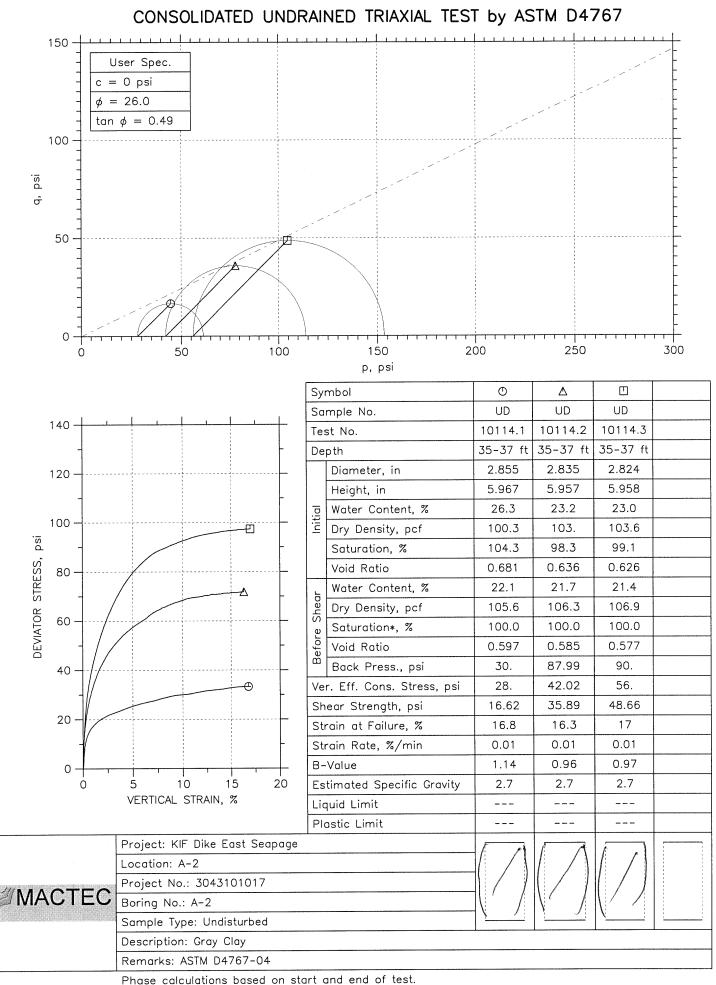

Phase calculations based on start and end of test.


	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ο	UD	101	07.1	7-9 ft	JW	4/12/10			10107.1_2583.dat
Δ	UD	101	07.2	7-9 ft	JW	4/12/10			10107.2_2582.dat
	I I	L	Designet		ant Sonnan	Location: A	- 2	Proje	ct No.: 3043101017
14	MACTE	C.	Project		ast Seapage				
1000000000			Boring	No.: A-2		Sample Typ	e: Undisturbed		
			Descrip	tion: Gray C	lay with Grave	el			
			Remark	s: ASTM D4	767-04				

Phase calculations based on start and end of test.

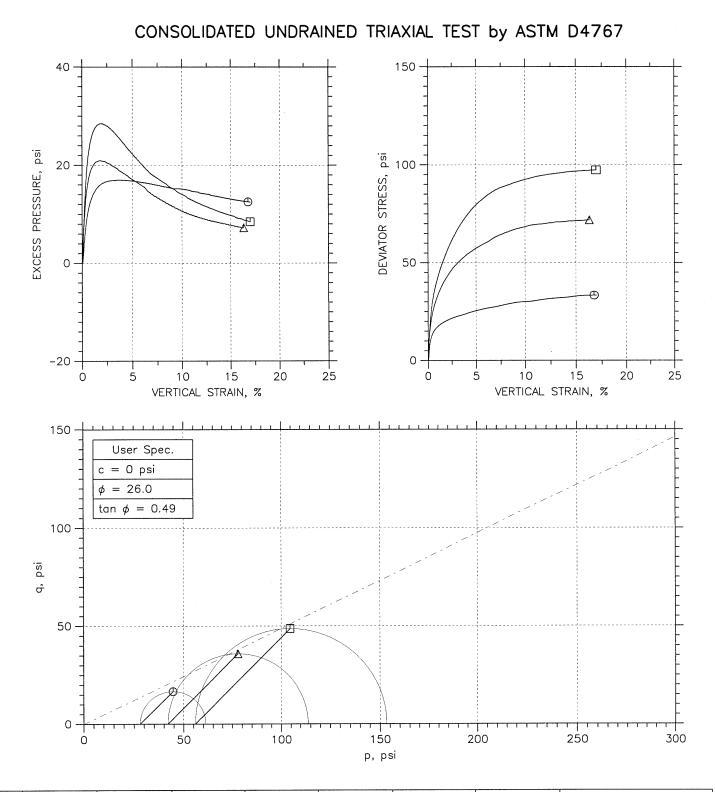


	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ο	UD	101	07.1	7-9 ft	JW	4/12/10			10107.1_2583.dat
Δ	UD	101	07.2	7-9 ft	JW	4/12/10			10107.2_2582.dat
111		· ^	Project:	KIF Dike Ea	st Seapage	Location: A-	·2	Projec	et No.: 3043101017
	MACTE	:U	Boring I	No.: A-2		Sample Type	e: Undisturbed		
			Descrip	tion: Gray Clo	ay with Grave				
			Remark	s: ASTM D476	67-04				



Wed, 21-APR-2010 08:51:20

Phase calculations based on start and end of test.



	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	UD	101	14.1	35-37 ft	JW	4/14/10			10114.1_2583.dat
Δ	UD	101	14.2	35-37 ft	WL	4/14/10			10114.2a_2581.dat
	UD	101	14.3	35-37 ft	JW	4/14/10			10114.3_2582.dat
	MACTEC								
110			Project:	KIF Dike Ea	st Seapage	Location: A-	-2	Projec	t No.: 3043101017
31			Boring	No.: A-2		Sample Type	e: Undisturbed		
			Descrip	tion: Gray Clo	у				
			Remark	s: ASTM D47	67-04				

nuse conculations based on start and end of test

* Saturation is set to 100% for phase calculations.

	Sample No.	Test	t No.	Depth	Tested By	Test Date	Checked By	Check Dat	e Test File
Ο	UD	101	14.1	35-37 ft	JW	4/14/10			10114.1_2583.dat
Δ	UD	101	14.2	35-37 ft	JW	4/14/10			10114.2a_2581.dat
	UD	101	14.3	35-37 ft	JW	4/14/10			10114.3_2582.dat
114	MACTEC		Project:	KIF Dike Eas	st Seapage	Location: A-	-2	Pro	oject No.: 3043101017
31			Boring I	No.: A-2		Sample Typ	e: Undisturbed		
			Descrip	tion: Gray Clo	у				
			Remark	s: ASTM D476	57-04				

Project No.	3043-10-1017	Tested By	JW				
Project Name	KIF East Dike Seapage	Test Date	4/15/2010				
Boring No.	A-2	Reviewed By					
Sample No.	UD	Review Date					
Sample Depth	33-35 ft	Lab No.	10113				
Sample Description Gray Clay							

ASIM D3004 - Meinou T (CV)	(11)
Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	26.5
Wet Unit Weight, pcf:	127.4
Dry Unit Weight, pcf:	100.7
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	4.4E-08

ASTM D5084 - Method F (CVFH)

MACTEC

KIF East Dike Seapage Gray Clay Project Number 3043-10-1017 33-35 ft A-2 Ŋ Sample Description Sample Depth Project Name Sample No. Boring No.

Test Date 04/15/10 Lab No. 10113 Tested By JW Review Date Reviewed By

	Initial	Initial Sample Data		Final Sample Data	Data
Length, in	u	Diameter, in		Pan No.	AB-9
Location 1	5.554	Location 1	2.876	Wet Soil+Pan, grams	1236.76
Location 2	5.500	Location 2	2.842	Dry Soil + Pan, grams	1025.90
Location3	5.522	Location 3	2.864	Pan Weight, grams	87.16
Average	5.525	Average	2.861	Moisture Content, %	22.5
Volume, in ³	35.51	35.51 Wet Soil + Tare, grams	1187.45	Dry Unit Weight, pcf	107.6
SG Assumed	2.70	Tare Weight, grams	0.00	Saturation, %	107.3
Soil Sample Wt., g	1187.45	Dry Soil +Tare, grams	938.74	Diameter, in.	N/A
Dry UW, pcf	100.7	Moisture Content, %	26.5	Length, in.	N/A
Saturation, %	106.3			Volume, in ³	N/A

E	
0	
• —	
-	
3	
9	
•	
0	
ä	
0	
$\overline{(1)}$	
\smile	

49	21	28	37.44	0	37.44	
Chamber Pressure, psi	Back Pressure, psi	Confining Pressure, psi	Initial Burett Reading	Final Burett Reading	Volume Change, cc	

water

Permeant used

k	cm/sec	at 20 °C	4.95E-08	4.38E-08	4.20E-08	4.94E-08	4.41E-08	4.14E-08	3.80E-08	
k	cm/sec		5.35E-08	4.74E-08	4.54E-08	5.28E-08	4.71E-08	4.42E-08	4.06E-08	
Final	Hydraulic	Gradient	21.5	20.3	19.3	21.8	20.6	20.0	18.3	
Intial	Hydraulic	Gradient	23.8	23.8	23.8	23.2	23.2	23.2	23.2	
Temp	(₂ °)		23.3	23.3	23.3	22.8	22.8	22.8	22.8	
Δz_p	(cm)		2.45	3.80	4.80	1.55	2.75	3.40	5.25	
qz	(cm)		25.55	24.20	23.20	25.75	24.55	23.90	22.05	
za	(cm)		28.00	28.00	28.00	27.30	27.30	27.30	27.30	
Z ₀	(cm)		1.40	1.40	1.40	1.40	1.40	1.40	1.40	
Elapsed Time	(sec)	,	1530	2760	3720	066	2020	2700	4740	

No. of Trials	s Sample N	Max. Density Compaction	Compaction	Sample
	Type	(pcf)	0%	Orientation
7	ſŊ	N/A	N/A	Vertical

Vertical

4.4E-08 cm/sec

Remarks:

 0.031416 cm^2 0.03018

ap ∎

 $C = M_1 S / (G_{Hg}\text{--}1) = -0.0008126 \text{ for } 15^\circ \text{ to } 25^\circ$ 1.04095 $M_{l}^{=}$ $M_{2}^{=}$

0.33845 1/cm 41.47 cm^2 14.03 cm $\mathbf{A} =$

0.76712 cm²

 $a_a =$

L =

S=L/A=

Project No.	3043-10-1017	Tested By	JW				
Project Name	KIF East Dike Seapage	Test Date	4/12/2010				
Boring No.	A-1	Reviewed By					
Sample No.	UD	Review Date					
Sample Depth	33-35 ft	Lab No.	10115				
Sample Description Greenish Gray Clay							

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	23.5
Wet Unit Weight, pcf:	131.1
Dry Unit Weight, pcf:	106.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.3E-08

ASTM D5084 - Method F (CVFH)

Tested By JW Reviewed By Review Date KIF East Dike Seapage Project Number 3043-10-1017 33-35 ft Ð A-1 Sample Depth Project Name Sample No. Boring No.

Test Date 04/12/10

MACTEC

Lab No. 10115

Greenish Gray Clay

Sample Description

Consolidation

32	4	si 28	65.44	3.25	62.19	
Chamber Pressure, psi	Back Pressure, psi	Confining Pressure, psi	Initial Burett Reading	Final Burett Reading	Volume Change, cc	

8.41 17.5 119.1

977.85

Dry Soil + Pan, grams

2.826

Location 2 Location 3

> 5.532 5.532

5.524 5.541

Location 2

Location 1

Location3

Average

Location 1

2.837

Wet Soil+Pan, grams

2.827

Diameter, in

Length, in

Initial Sample Data

Pan No.

1147.07 1-2

Final Sample Data

water

Permeant used

113.7

Dry Unit Weight, pcf

1197.72

Wet Soil + Tare, grams

34.80 2.70

Average

Tare Weight, grams

Dry Soil +Tare, grams Moisture Content, %

1197.72

Soil Sample Wt., g

SG Assumed

Volume, in³

Dry UW, pcf Saturation, %

106.1 108.2

Saturation, % Diameter, in.

0.00969.44

Moisture Content, % Pan Weight, grams

2.830

A/A A/A AN

> Volume, in³ Length, in.

23.5

cm/sec cm/sec		7.15E-08 6.52E-0	5.65E-08 5.15E-0	5.62E-08 5.13E-0		5.73E-08 5.23E-0	5.5E-08 4.98E-0	5.5E-08 5.02E-0
Final Hvdraulic cn		10.4 7.1	14.2 5.6	12.5 5.6	11.5 5.7	13.7 5.7	11.5	13.1
Intial Hvdraulic		15.7	15.8	15.8	15.8	15.3	15.3	14.8
Temp (°C)		23.9	23.9	23.9	23.9	23.9	23.9	23.9
Δz_p		5.75	1.70	3.50	4.60	1.70	4.05	1.80
zb (cm)	(m)	13.25	17.35	15.55	14.45	16.75	14.40	16.10
za (cm)		19.00	19.05	19.05	19.05	18.45	18.45	17.90
Z ₀ (cm)		1.40	1.40	1.40	1.40	1.40	1.40	1.40
Elapsed Time	(126)	4830	1555	3420	4620	1590	4320	1819

08 08 08

08

80 80

08

No. of Trials	Sample	Sample Max. Density Compaction	Compaction	Sample
	Type	(pcf)	%	Orientation
7	Π	N/A	N/A	Vertical

0.031416 cm^2	0.03018	1.04095	0.0008314 for 15° to 25°
a ^p =	$M_{1}=$	$M_{2}=$	$C = M_1 S/(G_{Hg}-1) =$
0.76712 cm ²	40.58 cm^2	L = 14.05 cm	= 0.34627 1/cm
$a_a =$	A =	L = L	S=L/A=

5.3E-08 cm/sec

υ

Project No.	3043-10-1017	Tested By	JW
Project Name	KIF East Dike Seapage	Test Date	4/12/2010
Boring No.	A-3	Reviewed By	
Sample No.	UD	Review Date	
Sample Depth	10.5-12.5 ft	Lab No.	10116
Sample Description	Tan Clay with Gravel		

ASIM D3004 - Meinou F (CV)	
Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	30.7
Wet Unit Weight, pcf:	124.4
Dry Unit Weight, pcf:	95.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	8.4E-08

ASTM D5084 - Method F (CVFH)

Project Number	Project Number 3043-10-1017	Tested By
Project Name	KIF East Dike Seapage	Test Date
Boring No.	A-3	Reviewed By
Sample No.	UD	Review Date
Sample Depth 10.5-12.5 ft	10.5-12.5 ft	Lab No.
Sample Description	otion Tan Clay with Gravel	iravel

JW	04/12/10			10116	
Tested By JW	Test Date 04/12/10	Reviewed By	Review Date	Lab No. 10116	[9]

	Initial	Initial Sample Data		Final Sample Data	ata
Length, in		Diameter, in		Pan No.	H-7
Location 1	5.425	Location 1	2.848	Wet Soil+Pan, grams	1112.33
Location 2	5.371	Location 2	2.851	Dry Soil + Pan, grams	874.00
Location3	5.432	Location 3	2.871	Pan Weight, grams	8.17
Average	5.409	Average	2.857	Moisture Content, %	27.5
Volume, in ³	34.67	34.67 Wet Soil + Tare, grams	1131.87	Dry Unit Weight, pcf	98.4
SG Assumed	2.70	Tare Weight, grams	00.0	Saturation, %	104.3
Soil Sample Wt., g	1131.87	Dry Soil +Tare, grams	865.83	Diameter, in.	
Dry UW, pcf	95.1	Moisture Content, %	30.7	Length, in.	
Saturation, %	107.6			Volume, in ³	

									-
k	cm/sec	at 20 °C	8.31E-08	8.64E-08	8.10E-08	8.09E-08	9.08E-08	8.50E-08	8.24E-08
k	cm/sec		8.76E-08	9.11E-08	8.54E-08	8.53E-08	9.57E-08	8.95E-08	8.68E-08
Final	Hydraulic	Gradient	15.9	13.7	13.0	11.8	17.1	16.3	14.2
Intial	Hydraulic	Gradient	17.3	17.3	17.3	17.3	18.7	18.7	18.7
Temp	(₀ °)		22.2	22.2	22.2	22.2	22.2	22.2	22.2
Δz_p	(cm)		1.50	3.80	4.50	5.80	1.60	2.50	4.70
dz	(cm)		19.00	16.70	16.00	14.70	20.40	19.50	17.30
za	(cm)		20.50	20.50	20.50	20.50	22.00	22.00	22.00
Z ₀	(cm)		1.60	1.60	1.60	1.60	1.60	1.60	1.60
Elapsed Time	(sec)		785	2057	2661	3600	710	1216	2520

Consolidation

water Permeant used

1.04095

 $M_{2}=$

 $C = M_1 S / (G_{Hg^-} 1) = -0.0007978 ~ {\rm for}~ 15^\circ ~ {\rm to}~ 25^\circ$

0.03018

Remarks:

8.4E-08 cm/sec

Avg. k at 20 °C

Orientation

(pcf) N/A

N/A%

Sample

Max. Density Compaction

Sample Type ß

No. of Trials

5

Vertical

 0.031416 cm^2

ap=

 $M_{l} =$

 0.76712 cm^2

 41.35 cm^2 13.74 cm $a_a =$

= V L L

0.33228 1/cm S=L/A=

Project No.	3043-10-1017	Tested By	JW
Project Name	KIF East Dike Seapage	Test Date	4/13/2010
Boring No.	<i>A-2</i>	Reviewed By	
Sample No.	UD	Review Date	
Sample Depth	25-27 ft	Lab No.	10110
Sample Descriptior	Brown Sandy Clay with Gravel		

ASTM D5084 - Method F (CVFH)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	30.6
Wet Unit Weight, pcf:	119.6
Dry Unit Weight, pcf:	91.6
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	1.7E-07

MACTEC

Tested By JW Reviewed By Review Date Brown Sandy Clay with Gravel KIF East Dike Seapage Project Number 3043-10-1017 25-27 ft A-2 ß Sample Description Sample Depth Project Name Sample No. Boring No.

Test Date 04/13/10 Lab No. 10110

	Initial	Initial Sample Data		Final Sample Data	Data
Length, in		Diameter, in		Pan No.	T-9
Location 1	3.197	Location 1	2.844	Wet Soil+Pan, grams	605.44
Location 2	3.110	Location 2	2.819	Dry Soil + Pan, grams	475.81
Location3	3.114	Location 3	2.838	Pan Weight, grams	8.39
Average	3.140	Average	2.834	Moisture Content, %	27.7
Volume, in ³	19.80	19.80 Wet Soil + Tare, grams	622.01	Dry Unit Weight, pcf	97.3
SG Assumed	2.70	Tare Weight, grams	00.00	Saturation, %	102.5
Soil Sample Wt., g	622.01	Dry Soil +Tare, grams	476.42	Diameter, in.	N/A
Dry UW, pcf	91.6	Moisture Content, %	30.6	Length, in.	N/A
Saturation, %	98.4			Volume, in ³	N/A

k	cm/sec	at 20 °C	1.68E-07	1.71E-07	1.72E-07	1.71E-07	1.76E-07	1.79E-07	
k	cm/sec		1.82E-07	1.85E-07	1.86E-07		1.90E-07	1.93E-07	
Final	Hydraulic	Gradient	29.9	23.2	22.4	18.1	22.9	23.1	
Intial	Hydraulic		37.7	37.7	28.4	28.5	28.4	27.4	
Temp	(₀)		23.3	23.3	23.3	23.3	23.3	23.3	
Δz _p	(cm)		4.75	8.80	3.65	6.35	3.40	2.65	
zb	(cm)		20.55	16.50	15.75	13.15	16.05	16.15	
za	(cm)		25.30	25.30	19.40	19.50	19.45	18.80	
Z ₀	(cm)		1.40	1.40	1.40	1.40	1.40	1.40	
Elapsed Time	(sec)		009	1230	009	1155	540	420	

	Chamber Pressure, psi 55 Back Pressure, psi 34 Confining Pressure, psi 21	21 21 21 21
--	---	----------------------

water Permeant used

Remarks:

 $C = M_{\rm l} S / (G_{\rm Hg}\text{-}1) = -0.0004707 ~ {\rm for}~ 15^\circ ~ {\rm to}~ 25^\circ$ 1.04095 $M_{2}=$

0.19604 1/cm

S=L/A= L L

0.76712 cm² 40.69 cm^2 7.98 cm

 $a_a =$ $\mathbf{A} =$

9

0.03018 $M_{1}^{=}$

 0.031416 cm^2

 $a_p =$

1.7E-07 cm/sec

Avg. k at 20 °C

Orientation Vertical

(pcf) N/A

N/A %

Sample

Max. Density Compaction

Sample Type Ŋ

No. of Trials

Project No.	3043-10-1017	Tested By	JW							
Project Name	KIF East Dike Seapage	Test Date	4/12/2010							
Boring No.	A-2	Reviewed By								
Sample No.	UD	Review Date								
Sample Depth	9-11 ft	Lab No.	10108							
Sample Description	Sample Description Gray Clay with Gravel									

ASTM D5084-03 - (Method C Falling Head RisingTail)

Sample Type:	UD
Sample Orientation:	Vertical
Initial Water Content, %:	12.3
Wet Unit Weight, pcf:	137.2
Dry Unit Weight, pcf:	122.1
Compaction, %:	N/A
Hydraulic Conductivity, cm/sec. @20 °C	5.9E-06

(ASTM D5084 - 03) (Method C, Increasing Tailwater Level) **PERMEABILITY TEST**

Project Number	Project Number 3043-10-1017
Project Name	Project Name KIF East Dike Seapage
30ring No.	A-2 Re
sample No.	UD R
Sample Depth 9-11 ft	9-11 ft
sample Description	otion Gray Clay with Gravel

Test Date 04/12/10 Lab No. 10108 Tested By JW Review Date Reviewed By

Length, inDiameter, inPan NLocation 1 3.322 Location 1 2.832 Wet Soil+Location 2 3.316 Location 2 2.799 Dry Soil +Location 2 3.316 Location 2 2.813 Wet Soil+Location 3 3.401 Location 3 2.813 Pan WeiLocation 3 3.346 Average 2.813 Pan WeiAverage 3.346 Average 2.813 Pan WeiVolume, in ³ 20.82 Wet Soil + Tare, g 749.65 Dry Unit WoSG Assumed 2.7 Tare Weight, g 0.00 Saturation to the Soul + Tare, gSoil Sample Wt, g 749.65 Dry Soil + Tare, g 667.47 DiameteDry UW, pcf 122.1 Moisture Content, % 12.3 Length		Initial	Initial Sample Data		Final Sample Data)ata
1 3.322 Location 1 2.832 2 3.316 Location 2 2.799 3 3.401 Location 3 2.799 3 3.346 Location 3 2.813 3 3.346 Average 2.815 2 3.346 Average 2.815 2 20.82 Wet Soil + Tare, g 749.65 Xt., g 749.65 Dry Soil + Tare, g 667.47 Xt., g 122.1 Moisture Content, % 12.3	Length, in	Period	Diameter, in		Pan No.	DB-5
2 3.316 Location 2 2.799 3 3.401 Location 3 2.813 3 3.401 Location 3 2.813 2 3.346 Average 2.813 2 3.346 Average 2.813 2 3.346 Average 2.815 2 20.82 Wet Soil + Tare, g 749.65 Nt., g 749.65 Dry Soil + Tare, g 667.47 122.1 Moisture Content, % 12.3	Location 1	3.322	Location 1	2.832	Wet Soil+Pan, g	768.29
3 3.401 Location 3 2.813 2.813 3.346 Average 2.815 2.815 2.815 20.82 Wet Soil + Tare, g 749.65 749.65 0.00 Nt., g 749.65 Dry Soil + Tare, g 667.47 122.1 Moisture Content, % 12.3	Location 2	3.316	Location 2	2.799	Dry Soil + Pan, g	675.74
3.346 Average 2.815 20.82 Wet Soil + Tare, g 749.65 Nt., g 749.65 Dry Soil + Tare, g 667.47 Nt., g 122.1 Moisture Content, % 12.3	Location3	3.401	Location 3	2.813	Pan Weight, g	8.27
20.82 Wet Soil + Tare, g 749.65 2.7 Tare Weight, g 0.00 Vt., g 749.65 Dry Soil + Tare, g 667.47 122.1 Moisture Content, % 12.3	Average	3.346	Average	2.815	Moisture Content, %	13.9
2.7 Tare Weight, g 0.00 Wt., g 749.65 Dry Soil + Tare, g 667.47 122.1 Moisture Content, % 12.3	Volume, in ³	20.82	Wet Soil + Tare, g	749.65	Dry Unit Weight, pcf	124.8
749.65 Dry Soil + Tare, g 667.47 122.1 Moisture Content, % 12.3	SG Assumed	2.7	Tare Weight, g	00.0	Saturation, %	106.9
122.1 Moisture Content, % 12.3	Soil Sample Wt., g	749.65	Dry Soil + Tare, g	667.47	Diameter, in.	V/N
	Dry UW, pcf	122.1	Moisture Content, %	12.3	Length, in.	N/A
Saturation, % 87.6 Volume	Saturation, %	87.6			Volume, in ³	N/A

k	cm/sec	at 20 °C	6.73E-06	6.21E-06	5.81E-06	5.45E-06	5.66E-06	5.70E-06	5.63E-06
k	cm/sec		7.37E-06	6.81E-06	6.37E-06	5.98E-06	6.21E-06	6.25E-06	6.17E-06
Final Hydraulic	Gradient		4.6	7.2	8.1	8.9	8.0	8.6	8.7
Initial Hydraulic Final Hydraulic	Gradient		10.6	10.5	10.5	10.5	10.4	10.6	10.7
Temp	(°C)		23.9	23.9	23.9	23.9	23.9	23.9	23.9
H_2	(cm)		77.6	88.7	91.6	95.2	91.7	93.5	93.7
H _b	(cm)		38.5	27.9	23.0	19.9	24.1	20.6	19.9
H	(cm)		102.5	102.4	101.4	101.9	101.7	101.9	102.0
Ha	(cm)		12.3	13.5	12.1	12.7	13.1	11.6	10.9
Time	(sec)		1920	945	700	480	738	580	578

lidatio Č

Consolidation	u
Chamber Pressure, psi	45.7
Back Pressure, psi	38.7
Confining Pressure, psi	7
Initial Burette Reading	16.5
Finial Burette Reading	9.3
Volume Change, cc	7.2
Permeant used	Water

 40.14 cm^2 8.50 cm = **A** ۲ ۲ a II

 $H_2 =$ final outlet head in cm $H_b = final inlet head in cm$

> $H_1 = initial outlet head in cm$ t = time in seconds

L = length of sample in cmA = area of sample in cm^2

 $a = area of burette in cm^2$

Ha = initial inlet head in cm

 0.16 cm^2

Remarks:

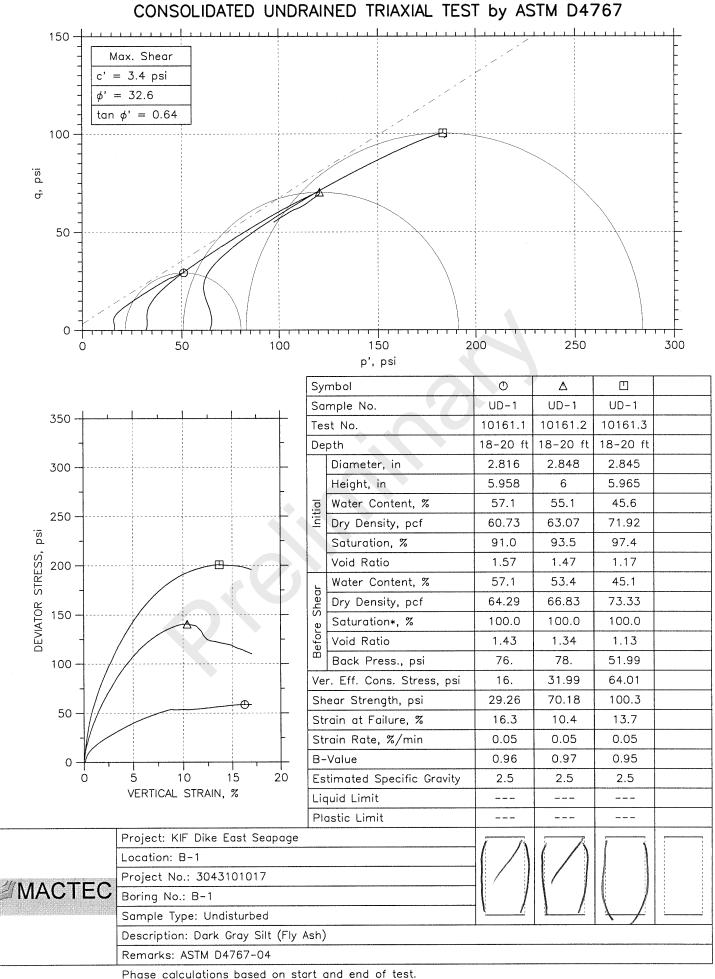
Avg. k at 20 °C

Orientation Sample

Max. Density Compaction

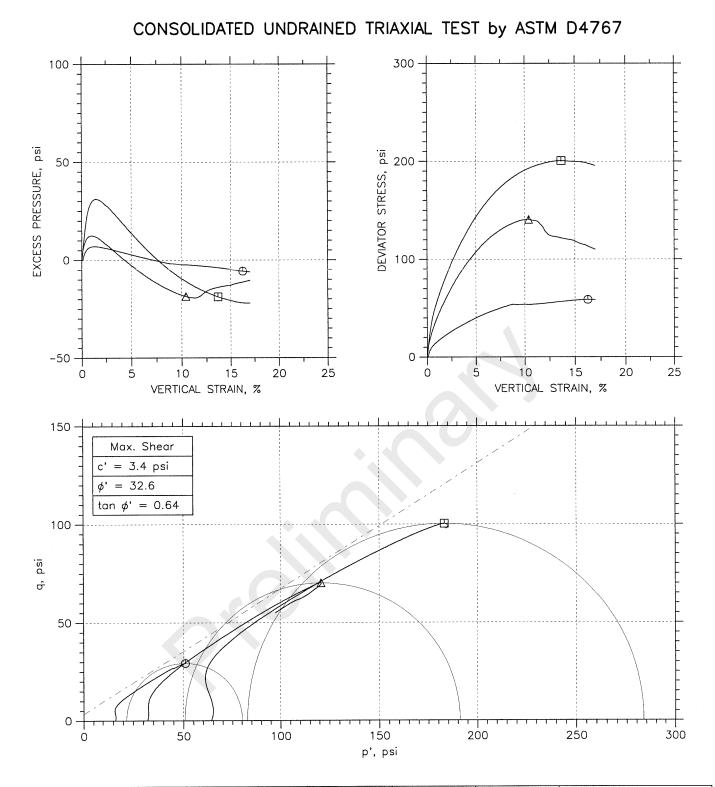
Sample Type Ð

No. of Trials

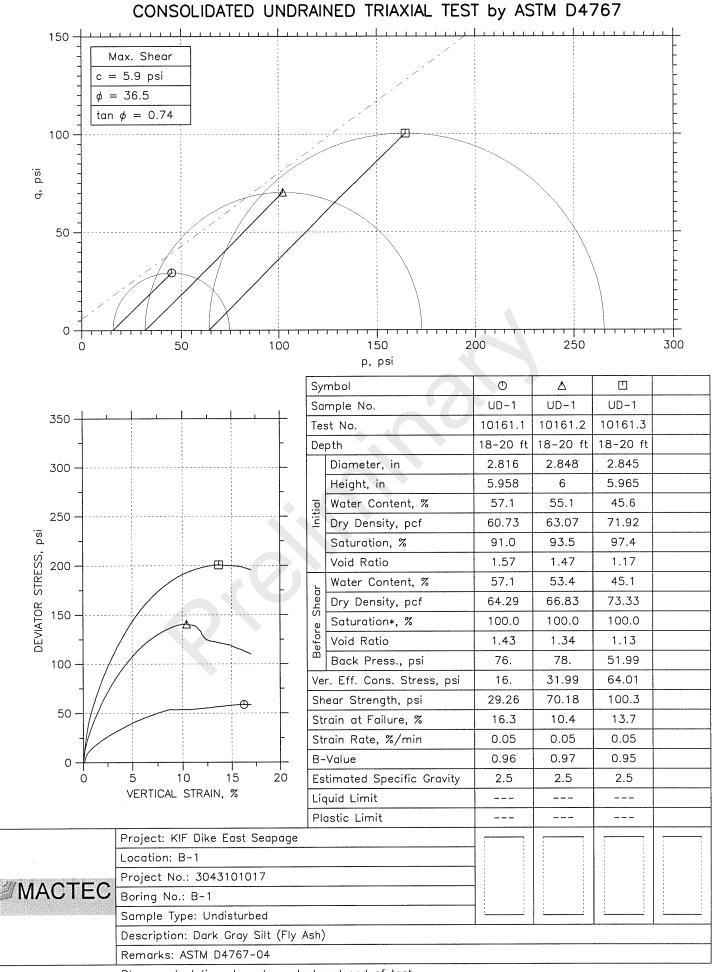

1

(pcf) N/A

Vertical

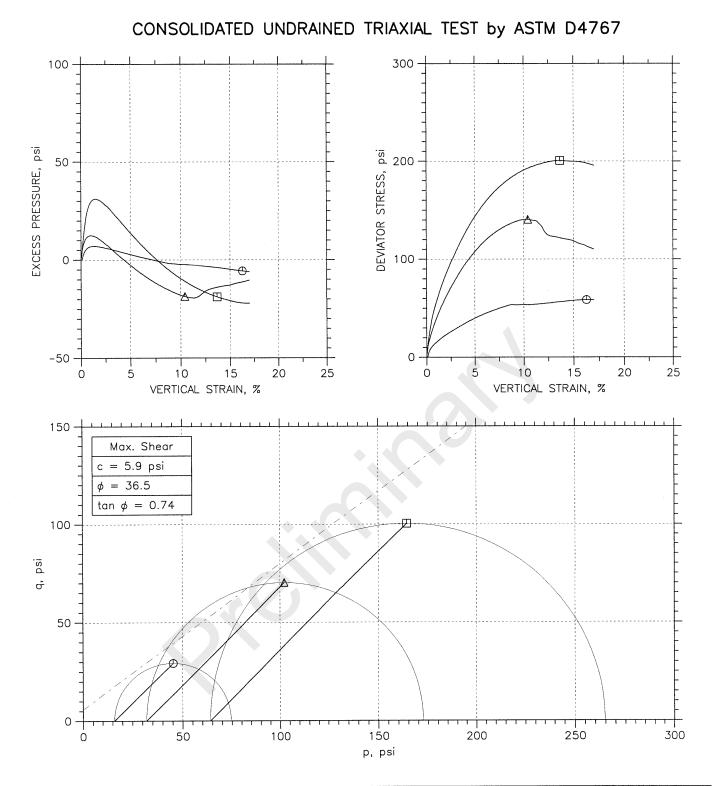

N/A %

5.88E-06 cm/sec



Fri, 07-MAY-2010 08:44:21

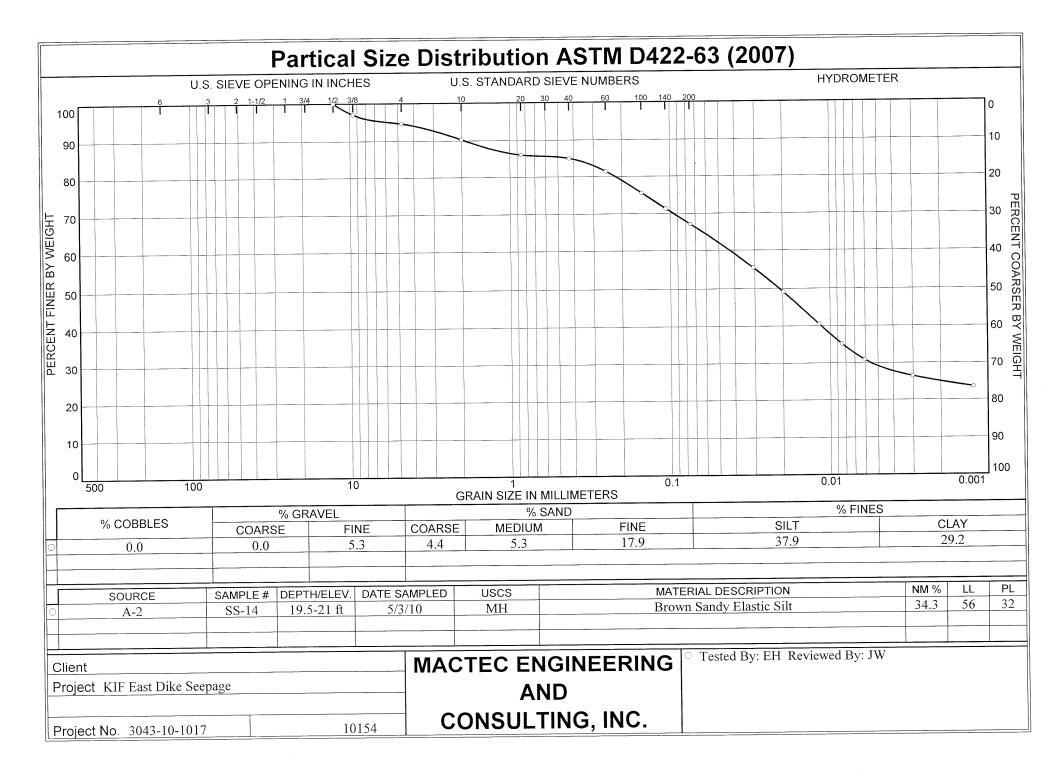
* Saturation is set to 100% for phase calculations.



	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File	
0	UD-1	101	61.1	18-20 ft	JW	5/4/10			10161.1_2583.dat	
Δ	UD-1	101	61.2	18-20 ft	JW	5/4/10			10161.2_2582.dat	
0	UD-1	101	61.3	18-20 ft	JW	5/4/10			10161.3_2581.dat	
		Project: KIF Dike Ea		st Seapage	Location: B-	- 1	Proje	ect No.: 3043101017		
21	MACTEC		Boring	No.: B-1		Sample Type: Undisturbed				
Description: Dark Gray Silt (Fly A			sh)							
			Remark	s: ASTM D47	67-04					

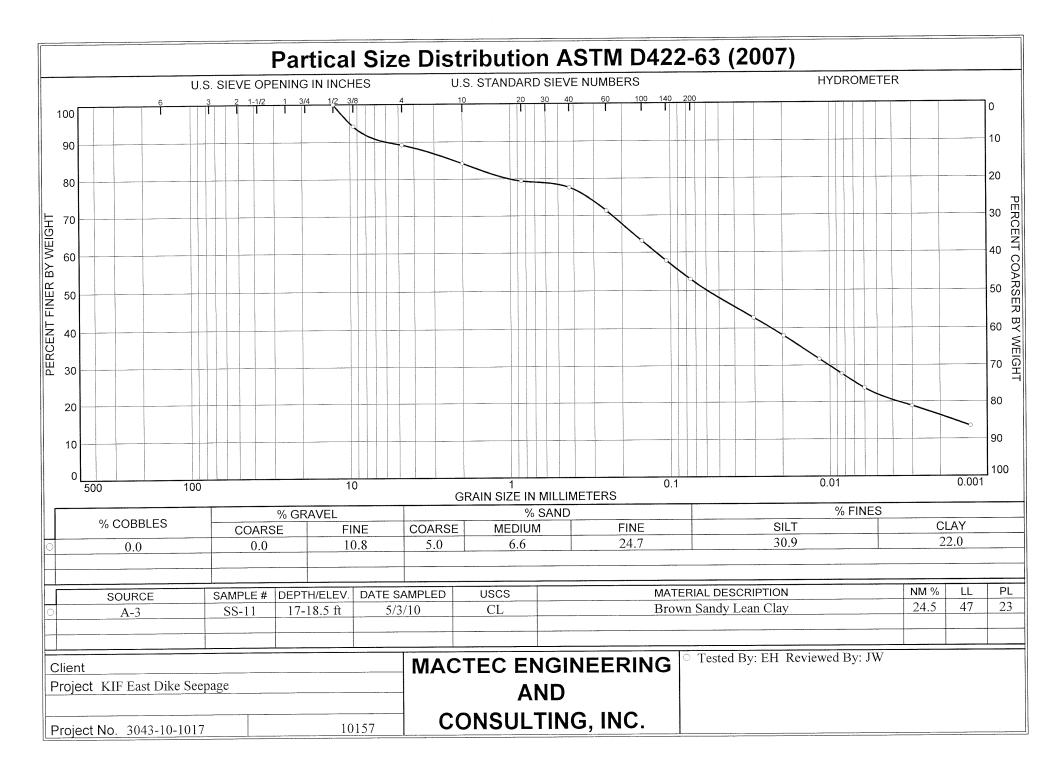
Phase calculations based on start and end of test.

* Saturation is set to 100% for phase calculations.


	Sample No.	Tes	t No.	Depth	Tested By	Test Date	Checked By	Check Date	e Test File
Ο	UD-1	101	61.1	18-20 ft	JW	5/4/10			10161.1_2583.dat
Δ	UD-1	101	61.2	18-20 ft	JW	5/4/10			10161.2_2582.dat
	UD-1	101	61.3	18-20 ft	JW	5/4/10			10161.3_2581.dat
			Project: KIF Dike East S		ist Seapage	Location: B	- 1	Pro	ject No.: 3043101017
MACTEC Boring N		No.: B-1		Sample Typ	e: Undisturbed				
Description: Dark Gray Silt (Fly As			sh)						
			Remark	s: ASTM D47	67-04				

					l	Par	tica	al S	ize	e Di	st	ribu	utio	on	AS	ТМ	D4	422	2-6	3 (2	200)7)							
			U.S	. SIEVE	E OPE	ENING	IN INC	HES			U.8	S. STA				IUMBE							ΗY	′DRC	METE	R			
100		6 1	3	3 2	1-1/2 I	1 3/4 I I	4 <u>1/2</u>	3/8	4		10	i	20 	30	40	60 I	100 I	140 I	200										0
80																													20
VEIGHT											$\overline{\ }$																		30 SERCENT
∧ 60 ∧ R B ∧ N 50																													COARSE
DERCENT FINER BY WEIGHT 90 90 90 90 90 90 90 90 90 90 90 90 90																													PERCENT COARSER BY WEIGHT 30 40 50 60 70
법 30 20																	<u></u>												70 IGHT 80
10																													90 100
	500		100			1		10			G	RAIN S	1 SIZE	IN MI	LLIME	TERS	1	0.1	1	I			0.0	01				0.001	-
	% COBI	BLES				% GR				0040				% SA			FINE			, , , , ,		SILT		% F	INES		CLA	v	
0	0.0)			DARS 0.0	E		-INE 17.1		COAR 21.0		IV	27.0				19.9							14	4.4				
	SOUR A-1			SAMPI SS-			H/ELE\ 5-12 ft	. DAT	TE SA 5/3/	MPLEE /10	D	USC	CS			I				DESC			sual)			NM 17		LL	PL
	ct KIF Ea			oage		<u> </u>						TEC	ŀ	٩N	D			IG	о т	ested]	By: E	H Rev	viewe	ed By	7: JW				L
Proje	ct No. 30	43-10-1	017]	0150								,	Ο.		<u> </u>									· .	

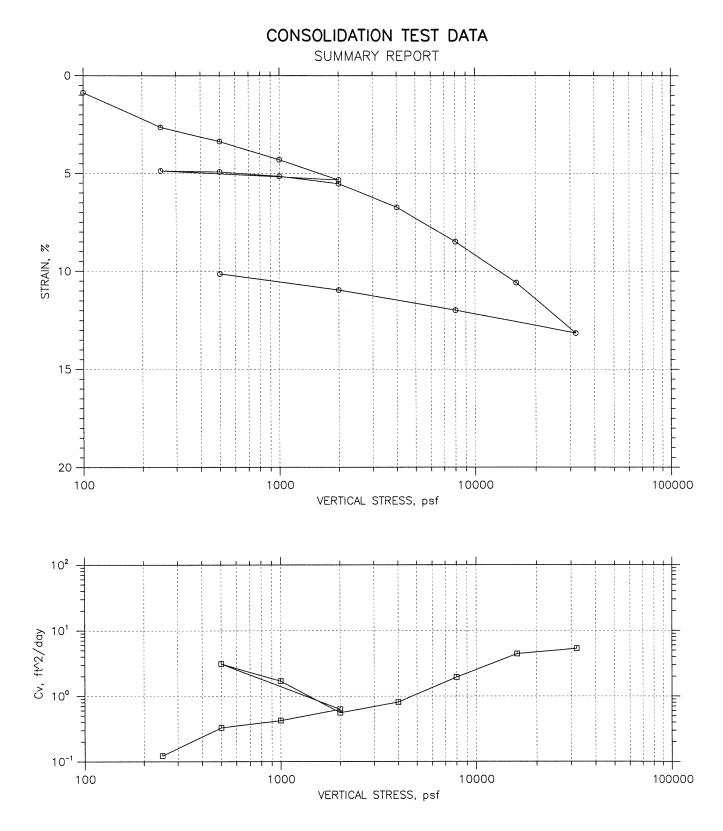
							I	Pa	rti	Ca	al S	Siz	ze	D	ist	tri	bu	ıti	0	n	AS	ST	M	D)4	22	2-6	3 (20)0	7)										
				U.S	. SIE	EVE	OPE	ENIN	G IN	IINC	HES	5			U	.S. 8	STA																HYC	DRC	OME	TER					
100			6 	3	3	2 1-	1/2 I	1	3/4	1/2 1	3/8		4		1	10			•	30	40		60 Y		0 1	40 3 4 1														٥	
90								and d'Los																																10	
80																																								20	J
145 70																																								- 30	ERCE
19 7 WEI 60									-																															40	NT CO
B NER NER 50																							NNE																	- 50	ARSEF
PERCENT FINER BY WEIGHT 00 00 00 00 00 00 00 00 00																																								60	PERCENT COARSER BY WEIGHT
DERC 30																																								- 70	/EIGHT
20																																								- 80	
10																														-										- 90	
о				100							10							1								0.1							0.01	1					0.00	10	0
	500			100											0	GRA	IN S	SIZE				ETE	RS																		
	% (COBBL	.ES			CO		% G	RA\		FINE			<u>204</u>	RSE	1	M	1ED		SAN 1			F	FINE	-						SILT	-		70 F	INE	5		CL	AY		
0		0.0).0	, 			0.0			0.				0.						3.3										90	6.5						
	S	OURCE			SAN	ЛРLE	E #	DEF	PTH/	ELE	/. D.	ATE	SAN	ЛРLE	D		USC	s							N			L DE			NC						NM		LL	F	PL
<u> </u>		A-1			S	S-13	3	28	3.5-3	30 ft		5	5/3/1	0												Gı	ay S	Silt (I	Fly A	(sh							33	5.3			
									·																		ОТ	estec	Bv	· EF	I R	evie	wed	B	/: .IV	N					
Clier													_	M	4C	;T	EC					١E	Eł	XII	N	כ	. 1	0000	. 29					<i></i>	,						
Proje	ect Kl	IF East	Dike	Seep	age															NE																					
Proj	ect No	. 3043	3-10-1	017							1015	1			C	10	٧S	U	Ľ	ΓΙΙ	NC	3,	IN		•																


			Partica	Size D	istribut	ion A	STM D4	22-63	(2007)			
	U.:		ENING IN INCH		U.S. STAND		ENUMBERS			HYDROMETE	ĒR	
100	6 I	3 <u>2 1-1/2</u>		18 <u>4</u>	10	20 30 40		140 200 I I				0
90 -												10
80 -												20 ס
70 IGHT												30 ERCEN
BY WE					· · · · · · · · · · · · · · · · · · ·							
DERCENT FINER BY WEIGHT 00 00 00 00 00 00 00 00 00 00 00 00 00												30 COARSER BY WEIGHT
40 ENT												
DER 90												
20												80
10												90 100
L	500 100		1	0	1 GRAIN SIZ		METERS	0.1		0.01	(0.001
			% GRAVEL			% SAND				% FINES		
	% COBBLES	COAR		NE COA			FINE 14.4		SILT 47.3		CLA 38.1	
	0.0	0.0		0.0 0	.0 0).2	14.4		47.3	I		
	SOURCE	SAMPLE #	DEPTH/ELEV.	DATE SAMPLE	D USCS]	MATERIAL DI				LL PL
0	A-1	SS-19	39.5-41 ft	5/3/10	CL			Brown L	ean Clay		24.2	39 20
Client	t			M	ACTEC	ENGI	NEERIN	G ^{C Teste}	ed By: EH Re	viewed By: JW		
1	ct KIF East Dike See	page				AND						
			10	1.52	CONSL		G. INC.					
Proje	ct No. 3043-10-1017	<u> </u>	10	0152			-,					

							Ρ	ar	tic	al	S	iz	e I	Dis	str	ib	uti	io	n /	AS	STI	N	D4	22	2-(63	(20	00	7)								
				U.S	S. SIE	VE O	PEN				ES				U.S	. STA								1.10	200					ΗY	DRC	OME	TER				
10	0		6 		3	2 1-1/ <i>.</i> 1 1	2	<u>1 3/4</u> I I	<u> 1/</u>	2 <u>3/8</u> 	3		4		10			20	30	40		$\overline{\mathbf{N}}$	100 I	<u>140</u>	1												0
9	o																			a de anti-																	10
8	0																						<u>}</u>														20 TI
THQ 140	0													-					-				\neg								-						30 SERCE
ien 6	0																																				40 UT CO
NER B	io																																				ARSEF
PERCENT FINER BY WEIGHT	0								Magaza																												30 40 50 60 70
PERC	80																																				70 FIGHT
2	20																														_						80
1	0																																				90
	0			100						10							1	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				-		0.1	1			- Antonio		0.0)1					0.001	100
	50	00		100							,				GF	RAIN	SIZE				TER	S															
		% COB	BLES			COAI		6 GR	AVEI	- FIN			- CC	DARS	F		MED	: % NUI	SAN	ID		FII	NE					ç	SILT	117 - 10 MIL	% F	INES	5		CLA	Y	
0		0.0)			0.				0.				0.0				.2				56									4.	3.7					
		SOUR	CE	1	SAM	1PLE :	# r)FPTI		FV	DA	TE S		LED		US	CS							MAT	ERI	AL DE	ESCR	IPTIC						NM	%	LL	PL
0		A-1				5-23		45.5					4/10													' Clay								24.	0		
													T _												0	Teste	dR	∕∙ FH	Rev	viewe	d By	v· IV	 N				
Clie		KIF Ea	nst Dib	e Seet	nage								- N	ΊΑ	C1	IE(EE	:R	IN	G								,					
	JUUL				<u></u>	,								_									•														
Pro	oject	: No. 30	43-10	-1017						10	153			C	:0	N S	5U			٩G	i, I	N	Ĵ.														

					Pa	artica	al S	ize	Dist	ribu	tior	ר א ו	STM [)422	2-6	3 (2	007)						
		ι	J.S.	SIEVE OF	PENI	NG IN INC	HES		U	.S. STAN			NUMBERS					F	IYDR	OME	TER			
100		6	3	2 1-1/2 I I	1	3/4 1/2 I I	3/8	4		0	20 3	30 40 1 1]0
90 -																								10
80																	\uparrow							20 סי
보 70 번 50																								30 ERCEN
37 WE																								40 T CO/
INER E																			$\mathbf{\lambda}$					50 SER
DERCENT FINER BY WEIGHT																								30 40 50 60 70
DER(_	70 HGHT
20																							\sim	80
10																								90
0	500	10	00				10				1			0.1				(0.01				0.001	100
					0/ (GRAVEL			(GRAIN SI		MILLIM	ETERS						%	FINE	S			
	% COBB	LES	-	COAR			INE		COARSE	M	EDIUM		FIN				SI						CLAY	
0	0.0			0.0			0.0		0.1		0.1		4.7	7			57	.7					37.4	
					-1											DESCF						NM %	LL	PL
	SOURC A-2	E		SAMPLE # SS-23		PTH/ELEV 3-34.5 ft	/. DA	TE SAI 5/3/1		USC: CL						Lean C						27.8	35	19
										TEC			NEERI	NG	ି Te	sted B	y: EH	Reviev	ved B	By: JV	W			
Client	t ct KIF Eas	st Dike Se	een	nge										UNG										
											A٨													
Proje	ct No. 304	43-10-10	17			1	0155		C	ONS	ULT	TINC	G, INC	×								1. La		

				Partica	l Size	e Dist	ributio	n ASTM	D422-6	63 (2007	')			
		U.S	. SIEVE OP	ENING IN INC	HES	U.:		SIEVE NUMBE			HYDROME	TER		
100 90	6 		3 2 1-1/2) 20 I							0 10
80														20 30 PEF
70 MEIGHT 60														40 RCENT C
INER BY														OARSER
PERCENT FINER BY WEIGHT 0 0 0 0 0 0 0 0 0														30 40 50 60 70
20													<u></u>	80 80
10													0.001	90 100
	500	100			10	G	1 RAIN SIZE IN	MILLIMETERS	0.1		0.01		0.001	
	% COBBLES			% GRAVEL				SAND			% FINE		LAY	
0	0.0		COAR 0.0		-INE 0.0	COARSE 0.0	MEDIUN 0.5		FINE 13.7		ILT 2.0		3.8	
0	SOURCE A-2		SAMPLE # SS-28	DEPTH/ELEV 40.5-42 ft		AMPLED /10	USCS ML			AL DESCRIPTIO nish Gray Silt	N	NM % 23.6	LL 34	PL 25
	t ect KIF East Dike ect No. 3043-10-			1	0156		A	NGINEEI ND TING, IN	KING	Tested By: EH	Reviewed By: JV	W		

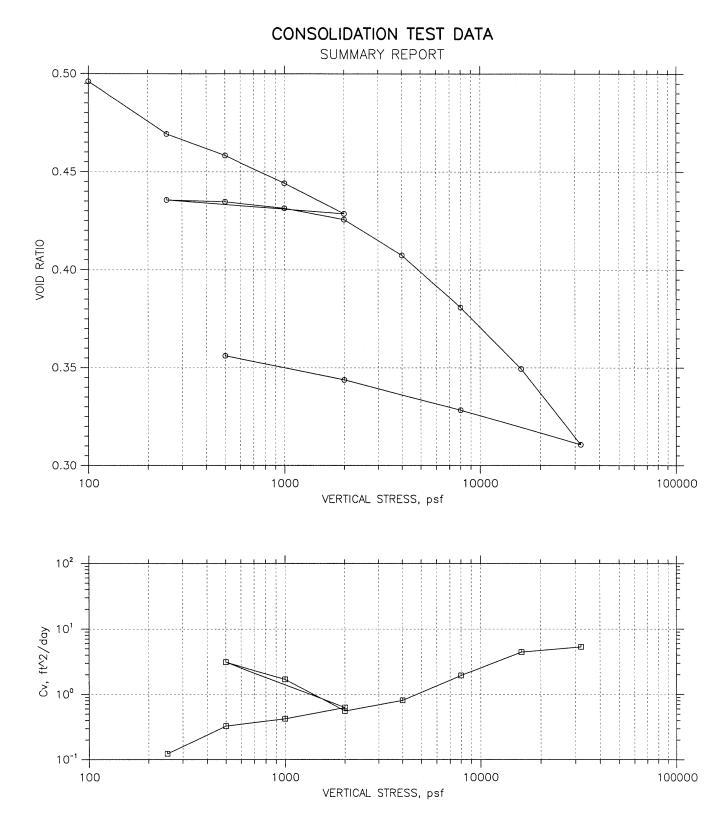

				Pai	rtica	Siz	e Dist	ributic	on A	STM D	422-6	53 (20					
		U.S	S. SIEVE C	PENINC	G IN INCH	IES	U	.S. STANDAR					F	IYDROME	ETER		
100	6		<u>3 2 1-1/</u>	2 1 3	14 <u>1/2 3/</u>	/8	41		30 40								0
90																	10
80																	20 70
THOIE																	30 ERCENT
09 ¥ W																	40 T COAR
PERCENT FINER BY WEIGHT 0 00 00 00 00 00 00																	30 COARSER BY WEIGHT
40 AD																	-60 3Y VEIG
H 30																	170 H
20																	90
10																0.001	100
	500	100			1	0	(1 GRAIN SIZE II		IETERS	0.1			0.01		0.001	
	% COBBLES	3			RAVEL		004505		6 SAND	FINE	-		SILT	% FINE		CLAY	
	0.0		COA 0			<u>NE</u>	COARSE	MEDIU 0.6	IVI	FINE 9.7			57.1			32.6	
	0.0																
	SOURCE				TH/ELEV.		SAMPLED	USCS				AL DESCRIF y Lean Cla			NM %		PL 20
	A-3		A-3SS-1	8 27.	.5-29 ft	5/	/3/10	CL			Gra	y Lean Cia	y		21.0		20
												Factod Dr.	EH Review	ved By: I		<u> </u>	
Clien								TEC E		NEERII	NG	rested By:	LI KEVIEV	veu by. J	ŶŶ		
Proje	ect KIF East D	ike See	page		7.57.07.07.07.07.07.07.07.07.07.07.07.07.07		-	A	ND								
Proie	ect No. 3043-1	0-1017			10)158	C	ONSUL	.TIN	G, INC	R						

							Pa	rtic	al	Siz	e Di	sti	ributio	n /	ASTM	I D42	22-	63 (2	2007	7)						
				U.S	. SIEV	'E OP	ENING	G IN II	NCH	ES		U.S	5. STANDAR	D SIE	VE NUMBE					ŀ	HYDRO	OMETE	ER			
100			6 	3	3 2	<u>1-1/2</u>	1 3	6/4 1 I	1 <u>2 3/8</u>	3	4	<u>10</u>	20	30		100 14	40 200 I I								(0
90																									·	10
80																									:	20 P
THOI																	N									30 ERCEN
BY WE																	Ň									40 T COA
DERCENT FINER BY WEIGHT 00 00 00 00 00 00 00 00																		\mathbf{n}								30 40 50 60 70
40 CENT																										60 WE
법 전 30																										70 GHT
20																										80
10																									>	90 100
0	500			100					10)		G	1 RAIN SIZE IN	J MILI	IMETERS		0.1			(0.01			0	.001	
					Ī		% GI	RAVE	L					SAN							% F	INES				
	%	COBBL	.ES		С	OARS	SE		FI		COAF		MEDIU	М		FINE				ILT				<u>CLAY</u> 2.9		
		0.0				0.0			0.	0	0.1	1	2.3			36.6			3	8.1				2.9		
	5	SOURCE	=								SAMPLE	D	USCS			0000		AL DESC					NM		L	PL
		B-1			SS-	.12	16	.5-18	ft	5/:	3/10		ML			Bla	ack Sa	ndy Silt	(FIY A:	<u>sn)</u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	59.		IV	NP
Clier		IF East	Dilco	See)age						MA	YC.	TEC E			RING) °	Tested H	By: EH	Review	wed By	y: JW			1	
). 304.			age				10	159		СС	A NSUL			IC.										

					Pa	artica	l Siz	e Dist	tributio	n A	STM	D422-	63 (2	007)				
		ι	J.S.	SIEVE OF	PENI	NG IN INCH	HES	U	.S. STANDAR						HYDROMETER	ł		
100		6	3	2 1-1/2 	1	3/4 1/2 3	5/8 1											0
90 -											\mathbf{n}							10
80																		20 PE
TH 20																		30 RCEN
BY ⁶⁰																		40 T COA
PERCENT FINER BY WEIGHT 00 00 00 00 00																		30 40 50 60 70
04 CENT																		60 ME
DER 90																		70 IGHT
20																		80
10																		90
0	500	10	10				0					0.1			0.01		0.001	
					0/	GRAVEL			GRAIN SIZE IN		VIETERS				% FINES			
	% COBBI	ES		COAR			INE	COARSE	MEDIU			INE		SILT		CL	_AY	
	0.0			0.0			0.0	0.0	3.8		5	5.3			40.9			
	SOURC	E		SAMPLE #	DE	PTH/ELEV	DATE	SAMPLED	USCS				RIAL DESCI	and the second se		NM %	LL	PL
<u> </u>	B-1			SS-17		30-31.5 ft		/3/10				Brown	Silty Sand	(Visual)		20.2		
Clien Proje	t ect KIF East	t Dike Se	eepa	age				MAC	TEC E	NGI ND	NEEF	ring °	Tested B	y: EH RE	viewed By: JW			
Proje	ect No. 304	3-10-101	17			1	0160	C	ONSUL	TIN	G, IN	C .						

			Partical	Size	e Distr	ibutio	n ASTM	D422-	63 (2007)				
	U.S		ENING IN INCH			. STANDARD	SIEVE NUMBE	RS		HYDROMETE	2		
100 90		3 2 1-1/2 I I I			10	20							0 10
80													20 PI
TH 20													30 ERCENT
W ×8 X 09													40 COARS
PERCENT FINER BY WEIGHT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													9 20 20 20 20 20 20 20 20 20 20 20 20 20
PERCE 30													VEIGHT 70
20													80 90
10 0	500 100		1	0		1		0.1		0.01			100
	500 100				GI		MILLIMETERS			% FINES			
	% COBBLES	COARS 0.0		NE 3.9	COARSE 11.7	MEDIUM 23.0		FINE 19.6	SILT 16.8			AY 0.0	
	0.0	0.0		5.7		23.0		1					
0	SOURCE B-2	SAMPLE # SS-7	DEPTH/ELEV. 9-10.5 ft	DATE SA 5/3		USCS SC			AL DESCRIPTION ey Sand with Grave		NM %	LL 35	PL 22
	t ect KIF East Dike See ect No. 3043-10-1017		10	0164		A	IGINEEI ND FING, IN	RING	Tested By: EH Rev	viewed By: JW			

					Partica	l Siz	e Dist	ributio	n AS	STM C)422-	63 (20	07)				
			U.S	S. SIEVE OP	ENING IN INCI	HES	U.\$	S. STANDARI					· F	IYDROME	TER		
100		<u> </u>		3 <u>2 1-1/2</u>	1 3/4 1/2 3		4 10) 20	30 40 1 1								0
90 - 80 -																	20
																	30 PERCE
BY WEI0 09																	40 NT COA
L FINER											×						50 RSER BY
PERCENT FINER BY WEIGHT 0																	30 40 50 60 70
20																	- 80
10														0.01		0.001	90 100
	500		100			10	G	1 RAIN SIZE IN		ETERS	0.1					0.001	
	%	COBBLES		COAR		INE	COARSE	MEDIU	SAND M	FIN			SILT	% FINE	S	CLAY 10.5	
		0.0		0.0	1	3.1	17.1	17.3		16.	8		25.2			10.5	
	S	B-3		SAMPLE #	DEPTH/ELEV 19.5-21 ft		SAMPLED 3/10	USCS SM				IAL DESCRIP ay Silty Sand			NM ⁶ 25.		PL 26
	ect K	IF East Di 0. 3043-1			1	0165		TEC EI A DNSUL	ND			Tested By:	EH Reviev	wed By: J	 W		


	Project: KIF East Dike Seepage	Location: B-3	Project No.: 3043101017
	Boring No.: B-3	Tested By: JW	Checked By:
MALA ATEA	Sample No.: UD-1	Test Date: 5/4/10	Depth: 24-26 ft
MACTEC	Test No.: 10166	Sample Type: Undisturbed	Elevation: N/A
	Description: Gray Sandy Clayey		
	Remarks: ASTM D2435-04		

CONSOLIDATION TEST DATA SUMMARY REPORT

0 -(5 10 STRAIN, % 15 20 -25 — 100 1000 10000 100000 VERTICAL STRESS, psf

					Before Test	After Test
Overburden Pressure: 0 psf			Water Content, %	22.14	16.42	
Preconsolidation Pressure: 0 psf		Dry Unit Weight, pcf	110.	122.5		
Compression Index: 0		Saturation, %	115.66	122.66		
Diameter: 2.499 in Height: 0.999 in		99 in	Void Ratio	0.51	0.36	
LL:	PL:	PI:	GS: 2.66			


	Project: KIF East Dike Seepage	Location: B-3	Project No.: 3043101017		
	Boring No.: B-3	Tested By: JW	Checked By:		
	Sample No.: UD-1	Test Date: 5/4/10	Depth: 24-26 ft		
MACTEC	Test No.: 10166	Sample Type: Undisturbed	Elevation: N/A		
	Description: Gray Sandy Clayey				
	Remarks: ASTM D2435-04				

	Project: KIF East Dike Seepage	Location: B-3	Project No.: 3043101017		
	Boring No.: B-3	Tested By: JW	Checked By:		
	Sample No.: UD-1	Test Date: 5/4/10	Depth: 24-26 ft		
MACTEC	Test No.: 10166	Sample Type: Undisturbed	Elevation: N/A		
	Description: Gray Sandy Clayey				
	Remarks: ASTM D2435-04				

CONSOLIDATION TEST DATA

SUMMARY REPORT

					Before Test	After Test
Overburden Pressure: 0 psf		Water Content, %	22.14	16.42		
Preconsolidation Pressure: 0 psf		Dry Unit Weight, pcf	110.	122.5		
Compression Index: 0		Saturation, %	115.66	122.66		
Diameter: 2.499 in Height: 0.999		99 in	Void Ratio	0.51	0.36	
LL:	PL:	PI:	GS: 2.66			

Project: KIF East Dike Seepage	Location: B-3	Project No.: 3043101017		
Boring No.: B-3	Tested By: JW	Checked By:		
Sample No.: UD-1	Test Date: 5/4/10	Depth: 24-26 ft		
Test No.: 10166	Sample Type: Undisturbed	Elevation: N/A		
Description: Gray Sandy Clayey				
Remarks: ASTM D2435-04				

SPECIFIC GRAVITY OF SOILS

ASTM D854-06

Project No.	3034-10-1017	Tested By EH
Project Name	KIF East Dike Seepage	Test Date 5/4/2010
Boring No.	B-3	Reviewed By
Sample No.	UD-1	Review Date
Sample Depth	24-26 ft	Lab No. 10166
Sample Description	Gray Sandy Clay	

	Pan No. C-37	
Tare No.	BB-12	
Tare Mass, gram	279.5	
Dry Soil + Tare Mass, grams	317.32	
Mass of oven-dried soil, grams, M _s	37.82	
Mass of pycnometer with water at test temperature (T), grams, $M_{pw,t}$	339.25	
Mass of pycnometer, water and soil, grams, M _{pws,t}	362.88	
Test Temperature, °C , T _t	23.4	
Specific Gravity at test temperature, $M_s / [M_{pw,t} - (M_{pws,t} - M_s)]$, G_t	2.665	
Temperature Coefficient, K	0.99924	
SPECIFIC GRAVITY (a) 20° C: $G_{20} o_{C} = K^{*}G_{t}$	2.66	

PREPARATION METHOD:

Method A, Wet Method B, Dry

EQUIPMENT USED	LID			
SCALE	418			
OVEN	144			
THERMOMETER	2866	Calibrated Ma	ss, g Measured Mass, g	Difference, g
PYCNOMETER	2053	90.28	90.28	0

Difference should be less than 0.06 g, or use a different

pycnometer.

REMARKS: